Category Archives: Intranasal Ketamine

703-844-0184 | Ketamine Therapy | Ketamine Therapy for depression Fairfax, Virginia | Weekly Ketamine infusions diminish refractory depression | NOVA Health Recovery Ketamine Infusion Center | Loudoun Ketamine Infusion | Ketamines Therapy

Call 703-844-0184 for an immediate consultation and appointment in Fairfax, Virginia.

Security Code:
security code
Please enter the security code:

Submit

Weekly Ketamine Infusions Show Initial, Repeated Depression Benefits

A new study shows that weekly ketamine infusions are associated with continued and maintained reductions in depressive symptoms among patients with treatment-resistant depression.

The findings, which are considered novel among studies assessing ketamine administration for patients with treatment-resistant depression, evidence the promising role the controversial drug could play in psychiatric care.

A team of investigators, led by Jennifer L. Phillips, PhD, an associate scientist in the Mood Disorders Research Unit at The Royal’s Institute of Mental Health Research, conducted a randomized, double-blind crossover comparison of single ketamine infusion versus active placebo control midazolam. The assessment, held with 41 participants with treatment-resistant depression at single treatment center, observed patients receive 6 open-label ketamine infusions 3 times per week over 2 once patients had a relapse of depressive symptoms.

Patients who reported a decrease of at least 50% in the Montgomery-Åsberg Depression Rating Scale (MADRS) received another 4 additional infusions once weekly in a maintenance phase.

Those administered a single ketamine infusion reported significantly reduced depressive symptoms at the primary efficacy endpoint of 24 hours post-care versus those treated with midazolam. The therapy showed cumulative antidepressant effects over repeated infusions, as well a doubling of antidepressant response rate in patients, according to linear mixed models.

Investigators found that 59% of patients met the response criteria following repeated infusions, with 3 infusions serving as the median dosage required to reach achieved response. In patients receiving weekly maintenance infusions, no further improvement in MADRS scores were reported.

The first-of-its-kind findings come just 1 month following the US Food and Drug Administration (FDA) approval of esketamine nasal spray (Spravato) for the treatment of patients with treatment-resistant depression. At the time, the therapy made history as the first novel treatment indicated for depression in 30 years—and headlines as one of the first hallucinogenic drugs to reach indication for a common condition.

Dennis Charney, MD, Dean of Icahn School of Medicine at Mount Sinai and a member of the Yale University team that led pioneering antidepressant ketamine trials in the 1990s, told MD Magazine® that microdosing or implementing controversial therapies for psychiatric care require what any other trial requires: control, safety, and a carefully-assessed standard for efficacy.

“No matter what treatment is being assessed, you have to follow those scientific approaches,” Charney said. “For conditions that don’t have effective treatments available, there should be an open mind.”

For the majority of individuals that benefit from it, it will be essentially buying them time for other treatments—be them pharmacotherapies or device-based treatment, or psychotherapies, because those are beginning to work much more slower than ketamine does,” he said.

Whatever its marketed use entails, Phillips and colleagues concluded positively that ketamine showed both initial and repeated benefits for antidepressant effects as a once-weekly infusion.

“These findings provide novel data on efficacious administration strategies for ketamine in patients with treatment-resistant depression,” they wrote. “Future studies should further expand on optimizing administration to better translate the use of ketamine into clinical settings.”

The study, “Single, Repeated, and Maintenance Ketamine Infusions for Treatment-Resistant Depression: A Randomized Controlled Trial,” was published online in The American Journal of Psychiatry.

703-844-0184 | NORTHERN VIRGINIA KETAMINE CENTER FOR DEPRESSION | NOVA HEALTH RECOVERY | ESKETAMINE VIRGINIA | Ketamine for Cluster Headaches | SPRAVATO CENTER OF FAIRFAX | INTRANSAL KETAMINE CENTER | 22304 22306 | FAIRFAX, VA | RESTON VIRGINIA KETAMINE INFUSION CENTER | KETAMINE DOCTOR NEAR ME | LOUDOUN COUNTY KETAMINE| 22201 | ARLINGTON KETAMINE CENTER

NOVA Health Recovery | Alexandria, Va 22306 | Call for esketamine and nasal ketamine as well as IV Ketamine for depression, PTSD, anxiety  703-844-0184 < Link

Link

Ketamine Infusion Combined With Magnesium as a Therapy for Intractable Chronic Cluster Headache: Report of Two Cases

Chronic cluster headache (CH) is a rare, highly disabling primary headache condition. As NMDA receptors are possibly overactive in CH, NMDA receptor antagonists, such as ketamine, could be of interest in patients with intractable CH.

Ketamine Infusion Combined With Magnesium as a Therapy for Intractable Chronic Cluster Headache: Report of Two Cases

September 1, 2017 by CHSG Admin

Authors: Xavier Moisset MD, PhD, Pierre Clavelou MD, PhD, Michel Lauxerois MD, Radhouane Dallel DDS, PhD, Pascale Picard MD
Source: Headache, Vol. 57, Issue 8, September 2017: 1261–1264. 

Abstract

Background

Chronic cluster headache (CH) is a rare, highly disabling primary headache condition. As NMDA receptors are possibly overactive in CH, NMDA receptor antagonists, such as ketamine, could be of interest in patients with intractable CH.

Case reports

Two Caucasian males, 28 and 45 years-old, with chronic intractable CH, received a single ketamine infusion (0.5 mg/kg over 2 h) combined with magnesium sulfate (3000 mg over 30 min) in an outpatient setting. This treatment led to a complete relief from symptoms (attack frequency and pain intensity) for one patient and partial relief (50%) for the other patient, for 6 weeks in both cases.

Conclusion

The NMDA receptor is a potential target for the treatment of chronic CH. Randomized, placebo-controlled studies are warranted to establish both safety and efficacy of such treatment.

Ketamine Infusions for Treatment Refractory Headache

December 27, 2016

Management of chronic migraine (CM) or new daily persistent headache (NDPH) in those who require aggressive outpatient and inpatient treatment is challenging. Ketamine has been suggested as a new treatment for this intractable population.

Ketamine Infusions for Treatment Refractory Headache

December 27, 2016 by CHSG Admin

Authors: Jared L. Pomeroy MD, MPH, Michael J. Marmura MD, Stephanie J. Nahas MD, MSEd, Eugene R. Viscusi MD
Source: Headache, Dec. 27, 2016

Abstract

Background

Management of chronic migraine (CM) or new daily persistent headache (NDPH) in those who require aggressive outpatient and inpatient treatment is challenging. Ketamine has been suggested as a new treatment for this intractablepopulation.

Methods

This is a retrospective review of 77 patients who underwent administration of intravenous, subanesthetic ketamine for CM or NDPH. All patients had previously failed aggressive outpatient and inpatient treatments. Records were reviewed for patients treated between January 2006 and December 2014.

Results

The mean headache pain rating using a 0-10 pain scale was an average of 7.1 at admission and 3.8 on discharge (P < .0001). The majority (55/77, 71.4%) of patients were classified as acute responders defined as at least 2-point improvement in headache pain at discharge. Some (15/77, 27.3%) acute responders maintained this benefit at their follow-up office visit but sustained response did not achieve statistical significance. The mean length of infusion was 4.8 days. Most patients tolerated ketamine well. A number of adverse events were observed, but very few were serious.

Conclusions

Subanesthetic ketamine infusions may be beneficial in individuals with CM or NDPH who have failed other aggressive treatments. Controlled trials may confirm this, and further studies may be useful in elucidating more robust benefit in a less refractory patient population.

Ketamine i. v. for the treatment of cluster headaches: An observational study

April 11, 2016

Cluster headaches have an incidence of 1–3 per 10,000 with a 2.5:1 male-to-female gender ratio. Although not life threatening, the impact of the attacks on the individual patient can result in tremendous pain and disability. The pathophysiology of the disease is unclear, but it is known that the hypothalamus, the brainstem, and genetic factors, such as the G1246A polymorphism, play a role. A distinction is made between episodic and chronic cluster headaches. In a controlled setting, we treated 29 patients with cluster headaches (13 with chronic cluster and 16 with the episodic form), who had been refractory to conventional treatments, with a low dose of ketamine (an NMDA receptor antagonist) i.v. over 40 min to one hour every 2 weeks or sooner for up to four times. It was observed that the attacks were completely aborted in 100 % of patients with episodic headaches and in 54 % of patients with chronic cluster headaches for a period of 3–18 months. We postulated neuroplastic brain repair and remodulation as possible mechanisms.

Safety and Efficacy of Prolonged Outpatient Ketamine Infusions for Neuropathic Pain

July 1, 2006

Ketamine has demonstrated usefulness as an analgesic to treat nonresponsive neuropathic pain; however, it is not widely administered to outpatients due to fear of such side effects as hallucinations and other cognitive disturbances. This retrospective chart review is the first research to study the safety and efficacy of prolonged low-dose, continuous intravenous (IV) or subcutaneous ketamine infusions in noncancer outpatients.

Ketamine has demonstrated usefulness as an analgesic to treat nonresponsive neuropathic pain; however, it is not widely administered to outpatients due to fear of such side effects as hallucinations and other cognitive disturbances. This retrospective chart review is the first research to study the safety and efficacy of prolonged low-dose, continuous intravenous (IV) or subcutaneous ketamine infusions in noncancer outpatients. Thirteen outpatients with neuropathic pain were administered low-dose IV or subcutaneous ketamine infusions for up to 8 weeks under close supervision by home health care personnel. Using the 10-point verbal analog score (VAS), 11 of 13 patients (85%) reported a decrease in pain from the start of infusion treatment to the end. Side effects were minimal and not severe enough to deter treatment. Prolonged analgesic doses of ketamine infusions were safe for the small sample studied. The results demonstrate that ketamine may provide a reasonable alternative treatment for nonresponsive neuropathic pain in ambulatory outpatients.

Intranasal Ketamine for the Relief of Cluster Headache

Ketamine’s Mechanism of Action

Ketamine (2-chlorophenyl)-2-(methylamino)-cyclohexanone hydrochloride), a human and veterinary anesthetic agent, has an extremely varied set of pharmacologic actions depending on the dosage used.1 A selective uncompetitive N-Methyl-D-aspartic acid (NMDA) glutamate receptor antagonist, the drug has been in legitimate clinical use since 1963.

When administered as an appropriate pharmacologic agent, ketamine has been shown to serve as a safe anesthetic agent. At sub-anesthetic doses, ketamine acts as an uncompetitive antagonist at ionotropic NMDA-type glutamate receptors, binding to a site on the receptor while it is open. Ionotropic glutamate receptors (iGluRs) mediate the majority of excitatory neurotransmission throughout the mammalian brain. Based on their pharmacology, there are three main classes of glutamate-activated channels:

  • α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptors (AMPARs)
  • kainate receptors
  • N-methyl-d-aspartate receptors (NMDAR).

Among ion-gated receptor subtypes (iGluRs), NMDAR are exceptional in their high unitary conductance, high Ca2+ permeability, and remarkably slow gating kinetics.

Ketamine has relatively specific effects on other glutamate subtypes. Several families of these receptors also include AMPA-type and kainate receptors, and the metabotropic family of receptors, of which many exist. NMDARs, in particular, are glutamate-gated ion channels primarily for calcium ions and are crucial for neuronal communication. NMDARs form tetrameric complexes that consist of several subunits. The subunit composition of NMDARs is subject to many changes, resulting in large numbers of receptor subtypes. Each subtype has distinct pharmacological and signaling properties.1 Interest and research is growing and abounds in defining specific functions of subtypes of the glutamate receptor system in both normal and pathological conditions in the central nervous system.

Clinical use of ketamine has led to reports of psychedelic side effects, such as hallucinations, memory defects, panic attacks, as well as nausea/vomiting, somnolence, cardiovascular stimulation and, in a minority of patients, hepatoxicity.In the author’s clinical experience, patients may feel a temporary sense of calm or fogginess after ketamine infusion.

Use in Migraine, Cluster Headache, and Neuropathic Pain Disorders

In more recent years, a very small number of clinicians, including the author, have used ketamine intravenously (IV), and in some cases, via intramuscular injection, to treat migraine, cluster headache, and various other chronic pain disorders, including mixed headache and neuropathic pain clinical syndromes.3-21 In the author’s clinic specifically, ketamine has been used via IV administration for more than 20 years to treat nearly 1,000 patients with various headache and pain disorders. These include: migraine and cluster headache flare-ups; headaches associated with orofacial pain disorders, such as trigeminal neuralgia (TN); atypical face pain; temporomandibular joint disorder (TMD); and neck pain.

Clinical use of ketamine has led to reports of psychedelic side effects, such as hallucinations, memory defects, panic attacks, as well as nausea/vomiting, somnolence, cardiovascular stimulation and, in a minority of patients, hepatoxicity. In the author’s clinical experience, patients may feel a temporary sense of calm or fogginess after a ketamine infusion.

The focus of this paper is to provide a summary of specific retrospective cases in which intranasal ketamine was used for the rescue of cluster headache in patients who had previously experienced a positive outcome from IV ketamine in the author’s outpatient clinic. Cluster headache was successfully eradicated in several patients [n = 17], prompting a mini anecdotal-based trial of rescue intranasal ketamine for continuing or new cluster headache flare-ups to be used by these patients at their home. Table I outlines the outpatient clinic’s treatment of various migraine and headache types. As shown, cluster headache was successfully eradicated in several patients [n = 17], prompting a mini anecdotal-based trial of rescue intranasal ketamine for continuing or new cluster headache flare-ups to be used by these patients at their home.

Retrospective Case Summaries

The dose of intranasal ketamine prescribed to patients ranged between 7.5 mg and 15 mg per 0.1 cc nasal spray (75 and 150 mg of ketamine per cc compounded in normal saline by a pharmacy). Patients were instructed to use one spray in the nostril of the affected side and wait 10 to 15 minutes to feel any effects, including side effects. They were to use the spray when they felt a cluster attack coming on. Patients were asked to use another spray of ketamine in the same nostril at 10- to 15-minute intervals until a sufficient degree of relief (at least 60 to 75%) was obtained for that cluster attack. If the attack still came on after about one hour, the instructions were for the patient to repeat the procedure. All patients were instructed not to drive after taking the medication and signed off on this agreement. Patients were also instructed to keep the nasal spray refrigerated when not in use; no efficacy loss was reported. Of the 17 patients who trialed the nasal spray, 11 elected not to have the intranasal ketamine compounded, or were lost to follow-up, leaving six case scenarios which are summarized herein.

Case 1

A 38-year-old male, with a 16-year history of cluster headache, including a family history of the same, had tried a number of acute and prophylactic agents with, at best, a shortening of the cluster episode. His attacks tended to flare in the spring and lasted up to three months at a time with 4 to 6 episodes per day. The attacks prevented him from working and he came to the outpatient clinic for IV treatment with ketamine, which resulted in a complete cessation after three days, with resolution of allodynia on the right side as well. He elected to try intranasal ketamine (15 mg) at the first onset of his next cluster episode. He reported pain relief and a feeling of calm after 2 to 3 sprays, with no adverse effects. Sometimes, he had to repeat the dosing regimen the next day.

Case 2

A 25-year-old woman was thrown from a horse during a competition and fractured her cervical spine, requiring surgery. The injury included syringomyelia between C3 and C7-T1 and left her with left-sided dystonia of the upper and lower body, abdomen, and chest wall, together with left-sided migraines, which she reported as new. Several times a year, she would awaken every night with left-sided cluster headache episodes, with facial allodynia, tearing, eyelid drooping, and increased dystonia and neck spasm; these occurred primarily in the winter season, with several up to six episodes in per night for a period of three to six weeks.

IV ketamine relieved most of her dystonic, cluster headache, and migraine symptoms, when complemented by IV and oral baclofen and tizanidine, as well as rescue opioids. Nasal spray ketamine was compounded, as well as buccal troches; both allowed her to continue working full-time in her hair salon. She reported no side effects while using the nasal spray ketamine. Liver function tests conducted every three to six months were unremarkable.

Cluster headache is characterized by excruciating, debilitating pain lasting from 15 to 180 minutes, or occasionally longer. The pain is typically located around or through one eye or on the temple. (Source: 123RF)

Case 3

A 55-year-old woman with episodic cluster headache and migraine (3 to 4 attacks per week) also experienced chronic neck pain and had diagnosed TN on the right side. Her cluster headache attacks started at age 27, with tearing, allodynia, and facial numbness. On occasion, her migraine would evolve into a cluster episode that came on during sleep and was seasonal as well, lasting about 2 months on average. She was not a smoker and had no family history of cluster headache but did have a family history of migraine.

She was treated successfully for migraine, right TN, and neck pain with botulinum toxin-A injections (Botox) every 3 to 5 months, supplemented by prophylactic neuropathically active medications, but no opioids. The Botox did not affect her cluster headache, except when they evolved from a migraine, and only to a slight extent (15 to 20%). Multiple acute and prophylactic therapies were attempted to resolve the cluster headache episodes to no significant avail.

IV ketamine was tried on one occasion over a period of 4 days during a cluster headache episode. As a result, the attacks were reduced from 5 per day to 1 per day, and only 1 cluster attack the following week, which was resolved with additional oral oxcarbazepine (600 mg).

The patient agreed to trial nasal spray ketamine which was compounded at 10 mg per 0.1 cc spray with the suggestion that she spray the right nostril every 10 to 15 minutes upon attack to give the medicine time to absorb from the nasal mucosa and to repeat the process until at least 75% relief was obtained. She reported being happy with this approach as it gave her control of her hardest-to-treat symptom. She also reported that her cluster episodes became less frequent over about 1 year and that her migraine and TN also improved; her Botox injection intervals grew longer over time.

Case 4

A 70-old-male, with a 40-plus year history of right-sided cluster attacks with eyelid drooping, tearing, allodynia, neck pain, and other symptoms was treated for these symptoms for many years. Opioids provided him with partial relief, at best. He had a chronic cluster headache that typically awoke him from a sound sleep at 1 or 2 am. These episodes were especially bad in the winter and during weather changes. He had a history of facial and other traumas before the headaches started, including a car accident, but no family history of cluster headache. He also had occasional migraine, about three per month, as well as chronic neck and back pain. He was treated with IV medications, including ketamine, up to 200 mg over 5 hours, with relief of his symptoms in the clinic.

He agreed to trial a compounded nasal spray of ketamine [12.5 mg per 0.1 cc] to use at each bedtime. Two sprays were indicated before each bedtime and at the first onset of any cluster headache at night. Sprays were repeated every 10 minutes until 50 to 65% relief was achieved. He took tizanidine before bedtime for neck spasm and sleep. The patient would, on occasion, repeat one or two ketamine sprays in the morning or during the day if he felt the next cluster attack coming on. As he was on frequent IV and nasal spray ketamine, his liver functions tests were routinely monitored over the course of several years; there was no observed impact.

Case 5

A 34-year-old male who worked in construction began having episodic cluster headache episodes at age 22. He had a family history of migraine and cluster headache. His attacks were season-specific, occurring mostly in the early summer of each or every other year. He described the attacks as very disabling and often awoke from a sound sleep for several weeks at a time as a result of them. He had tried several oral medications, including opioids, for suppression of symptoms without any real benefit and many side effects. When he first presented to the clinic, he trialed IV lidocaine, IV valproate sodium, and IV magnesium sulfate with only partial success in shutting down the episode.

IV ketamine was also offered at the beginning of one of his episodes, and it proved to work more effectively than other treatments. Specifically, the patient’s cluster episode duration was reduced by more than two-thirds (6 to 7 weeks to 7 to 10 days). Based on this result, he was prescribed compounded nasal spray ketamine (7.5 mg per 0.1cc spray) and instructed to use the spray once at bedtime, with additional sprays in one nostril (the affected side of the cluster headache) every 10 minutes until relief was obtained to at least 75%. The patient was also instructed to use the same approach during the day if the cluster headache returned. He used nasal spray ketamine for several years and his overall pattern became easier to treat successfully. His episodes grew further apart and he has reported only one short cluster headache episode in the past four years.

She got extinction of the cluster episode or at least 75% reductions in the cluster headache severity with up to 4-5 nasal sprays of ketamine at the dose described above, and has also noticed a shortening and diminution of the cluster headache episodes as time has gone by.

Case 6

A 51-year-old male, with a family history of cluster headache began having episodic attacks at age 18 with strong occurrences in the spring. He was a smoker. He had tried a calcium channel blocker, lithium, and other medications to little or no avail over the years. He found that triptans taken early in the course of a cluster attack, at several doses, would sometimes abort or lighten the burden of that particular cluster series.

A 3-day course of IV ketamine at the onset of one of his episodes nearly eradicated the episode, and since he lived a great distance (6 hours each way) from the clinic, he wanted to try the nasal spray form of ketamine for at-home application. He reported that a daily dose of 1500 mg of Depakote-ER often softened the arrival of his next cluster headache episode, as did prescribed triptans. However, he did not experience an end to the attack until IV ketamine had been administered.

15 mg per 0.1cc of nasal spray ketamine were compounded for this patient. He reported some nasal burning with the nasal ketamine formulation, so was advised by his pharmacist to use one drop of 2% lidocaine and orange oil as part of the prescription. This addition alleviated the side effect. The patient has successfully used this approach for many years to date. He requires 5 to 6 nasal sprays of ketamine per day, and his episodic cluster headache pattern has markedly softened and shortened in the past few years. He has reduced his dosage of Depakote-ER to 1 or 2 per day as well and attempted to stop smoking several times.

Discussion and Recommendation

The specificity of the ketamine speaks to a unique mechanism of action primarily through the blockade of the NMDA-glutamate and other close-related receptors. This treatment approach may provide insight into the distinctive involvement of this receptor family in the generation and maintenance of this and perhaps other, more rare trigeminal autonomic cephalalgias, or TACs.21

Based on this anecdotal evidence, observed retrospectively in the author’s outpatient clinic over a period of 20 years, intranasal ketamine seems to offer a legitimate, safe pharmacologic treatment for cluster headache rescue. The medication adds a new dimension to managing out-of-control cluster headache and mixed headache/pain disorders in an outpatient setting with no monitoring. Double-blind, placebo-controlled studies are needed to confirm these primarily open-label observations. It should be noted that a small number of patients (5) were given sham nasal treatment and their cluster headache did not respond.

The author found sub-anesthetic doses of intranasal ketamine to be very useful in the control of episodic and chronic cluster headache attacks, as well as in managing certain trigeminal neuralgia symptoms. On a 0 to 10 visual analog scale, pain scores were below 60 to 65% from initial baseline pain score after the use of the intranasal ketamine spray. Efficacy, as well as safety, and tolerability, of low dose IV ketamine were seen consistently in the outpatient clinic, without significant adverse effects. In the author’s opinion, therefore, ketamine may be considered when treating this clinically disabling condition. When used under controlled conditions, ketamine in a nasal spray form may offer a safe and more effective option to patients than emergency room visits and may also serve as a substitute for more standard IV-based rescue cluster headache medications.

About Cluster Headache:Cluster headache is characterized by excruciating, debilitating pain lasting from 15 to 180 minutes, or occasionally longer. The pain is typically located around or through one eye or on the temple. A series of cluster headaches can take place over several weeks to months, and may occur once or twice per year. Several of the following related symptoms may occur: lacrimation, nasal congestion, rhinorrhea, conjunctival injection, ptosis, miosis of the pupil, or forehead and facial sweating. Nausea, bradycardia and general perspiration may present as well. Attacks usually recur on the same side of the head. Cluster headaches afflict males more than females by a 2.5 to 1 ratio and have an overall prevalence of 0.4%. Onset of clusters is usually between ages 20 and 45. There is often no family history of cluster headache.

  1. Robert K, Simon C. Pharmacology and Physiology in Anesthetic Practice. 4th ed. Baltimore, MD: Lippincott, Williams & Wilkins; 2005
  2. Niesters M, Martini C, Dahan A. Ketamine for chronic pain: risks and benefits. Br J Clin Phamacol. 2014;77(2):357–367.
  3. Virginia Scott-Krusz, Jeanne Belanger, RN, Jane Cagle, LVN, Krusz, JC, Effectiveness of IV therapy in the headache clinic for refractory migraine, poster at 9th EFNS meeting Athens, Greece. 2005.
  4. Krusz, JC. Intravenous treatment of chronic daily headaches in the outpatient headache clinic. Curr Pain Headache Rep. 2006;10(1):47-53.
  5. Krusz JC, Cagle J, Belanger J, Scott-Krusz, V. Effectiveness of IV therapy for pain in the clinic, Poster P183 presented at 2nd International Congress on Neuropathic Pain Berlin, Germany. 2007
  6. Krusz JC, Cagle J, Hall S. Efficacy of IV ketamine to treat pain disorders in the pain clinic, (poster 216). J Pain. 27th Annual Scientific. American Pain Society, 2008.
  7. Krusz JC, Cagle J, Hall S. Efficacy of IV ketamine in treating refractory migraines in the clinic (poster 218). J Pain. 27th Annual Scientific. American Pain Society, 2008.
  8. Krusz JC, Cagle J, Hall S. Intramuscular (IM) ketamine for treating headache and pain flare-ups in the clinic (poster 219). J Pain. 27th Annual Scientific. American Pain Society, 2008.
  9. Krusz JC. IV ketamine in the clinic to treat Cluster Headache (poster abstract). American Academy of Neurology. Neurol. 2009;72(11):A89-90.
  10. Krusz JC, Cagle J, Scott-Krusz VB. Ketamine for treating multiple types of headaches (poster). 14th Congress International Headache Society. Cephalalgia. 2009;29(Suppl 1)163.
  11. Krusz JC. Difficult Migraine Patient. Pract Pain Manage. 2011;11(4):16.
  12. Krusz JC, Cagle J. IV Ketamine: Rapid Treatment for All TAC Subtypes in the Clinic, Abstract Poster #72, 15th Congress of the International Headache Society, Berlin, Germany, 2011.
  13. Krusz JC, Cagle J. IM ketamine for intractable headaches and migraines (poster abstract). American Headache Society Annual Meeting, Los Angeles, CA, 2012.
  14. Krusz JC. Traumatic Brain Injury: Treatment of Post-traumatic Headaches. Pract Pain Manage. 2013;13(5):57-68.
  15. Krusz JC, Cagle J, Belanger J, Scott-Krusz V. Effectiveness of IV therapy for pain in the clinic, Poster P183. European J Pain:11, Suppl 1, pS80, presented at 2nd Int’l Congress on Neuropathic Pain, Berlin, Germany. 2007.
  16. Krusz JC, Cagle J, Hall S. Efficacy of IV ketamine to treat pain disorders in the pain clinic, (poster 216). J Pain, 9: Suppl 2, P30, 27th Annual Scientific. American Pain Society. 2008.
  17. Krusz JC. Ketamine IV in an outpatient setting: effective treatment for neuropathic pain syndromes (poster #378). 32nd Annual Scientific Meeting, American Pain Society, New Orleans, 2013.
  18. Krusz JC. Ketamine IV – for CRPS, TN/TMD and other neuropathic pain in the outpatient clinic (poster #524). 4th International Congress on Neuropathic Pain, Toronto, Ontario, 2013.
  19. Krusz JC. The IV ketamine experience: treatment of migraines, headaches and TAC. JAMA Neurol. 2018
  20. Matharu MS, Goadsby PJ. Trigeminal Autonomic Cephalalgias: Diagnosis and Management. In: Silberstein SD, Lipton RB, Dodick DW, eds. Wolff’s Headache and Other Head Pain. 8th ed. New York, NY: Oxford Univ Press; 2008:379-430.
  21. Johnson JW, Glasgow NG, Povysheva NV. Recent insights into the mode of action of memantine and ketamine. Curr Opin Pharmacol. 2015 ;20:54-63. 

https://chsg.org/category/treatment-category/alternatives/

Cluster Headache Support Group

703-844-0184 | NORTHERN VIRGINIA KETAMINE CENTER FOR DEPRESSION | NOVA HEALTH RECOVERY | Esketamine Virginia | Intranasal Ketamine for depression : BMJ | SPRAVATO CENTER OF FAIRFAX | INTRANSAL KETAMINE CENTER | 22304 22306 | Fairfax, Va | Reston Virginia Ketamine Infusion Center | Ketamine Doctor near me | Loudoun County Ketamine| 22201 | Arlington Ketamine Center

NOVA Health Recovery | Alexandria, Va 22306 | Call for esketamine and nasal ketamine as well as IV Ketamine for depression, PTSD, anxiety  703-844-0184 < Link

Ketamine could be first of new generation of rapid acting antidepressants, say experts

Ketamine is the first truly new pharmacological approach to treating depression in the past 50 years and could herald a new generation of rapid acting antidepressants, researchers have predicted.

“We haven’t had anything really new for about 50 or 60 years,” said Allan Young, professor of mood disorders at the Institute of Psychiatry, Psychology and Neuroscience at King’s College, London, at a briefing on 12 July at London’s Science Media Centre.

Most of the new launches have been “tinkering with drugs which were really discovered in the ’50s and ’60s,” he explained. “Even the famous Prozac, which came in in the late ’80s, is really just a refinement of the tricyclic antidepressants that came in the ’50s. People say we are still in the age of steam, and we need to go to the next technological advance.”

Slow onset

In the past few years the focus has fallen on ketamine, which is used for pain relief and anaesthesia but is better known for being a horse sedative and a “club drug” that can induce hallucinations and calmness. It has been found to have rapid antidepressant effects and to be effective in many patients with treatment resistant depression.

US clinics increasingly offer IV infusions of ketamine off label, and in March esketamine, a nasal ketamine based drug, was approved by the US Food and Drug Administration for treatment resistant depression,1 at a cost of £32 400 (€36 060; $40 615) per patient per year.

Carlos Zarate, chief of the Experimental Therapeutics and Pathophysiology Branch at the US National Institute of Mental Health, who has been a key figure in the discovery and evaluation of ketamine as an antidepressant, said that one of the main problems with current antidepressants was their speed of onset in terms of antidepressant and anti-suicidal effects.

He explained that it took 10-14 weeks to see significant improvement with monoaminergic based antidepressants. “In my mind that is too slow,” he said. “We are focusing on treatments that can produce results within hours. That is where we are heading with the next generation of antidepressant, and ketamine is now the prototype for future generation antidepressants which will have rapid, robust antidepressant effects—rapid within a few hours.”

Efficacy and tolerability

Zarate said that, besides correcting chemical imbalances of serotonin and norepinephrine, the new generation of ketamine based antidepressants had other effects such as enhancing plasticity and restoring the synapses and dendrite circuits that shrivel in depression.

When ketamine is given to patients it binds to the N-methyl-D-aspartate (NMDA) receptor, causing a series of transient side effects including decreased awareness of the environment, vivid dreams, and problems in communicating. But the half life of ketamine is only two to three hours, so these side effects quickly subside, whereas the therapeutic effects of the drug last seven days or longer.

Zarate’s team is now focusing on the 24 metabolites of ketamine to hone the drug’s efficacy and tolerability. One of these, hydroxynorketamine, has already been shown to have similar antidepressive effects to ketamine in animals, without the side effects, and it is due to be tested in patients this autumn.

“Ketamine may actually be a prodrug for hydroxynorketamine,” said Zarate.

High cost

A few dozen patients with treatment resistant depression have been treated with ketamine in UK trials, and the European Medicines Agency and the Medicines and Healthcare Products Regulatory Agency are due to reach a decision on authorising esketamine for marketing in October. If the drug is approved private clinics will be able to provide it. But it would be unlikely to be available through the NHS until at least 2020, if at all, as the National Institute for Health and Care Excellence would need to deem it cost effective.

Rupert McShane, consultant psychiatrist and associate professor at the University of Oxford, said that, as well as the likely high cost of esketamine, patients treated with it must be observed in a clinic for two hours after each administration. This would require substantial clinical time, as esketamine is given twice a week for the first month, once a week for the second month, and once a week or once a fortnight from then on.

McShane also recommended that, if approved, a multidrug registry should be set up to monitor the long term safety and effectiveness of ketamine based drugs. Patients would be asked to input their use of any prescribed ketamine, esketamine, or any other future ketamine based product, as well as any self medication with illicit ketamine.

References


    1. Silberner J
    . Ketamine should be available for treatment resistant depression, says FDA panel. BMJ2019;364:l858.doi:10.1136/bmj.l858 pmid:30796014FREE Full TextGoogle Scholar

703-844-0184 | Northern Virginia Ketamine Center for Depression | NOVA Health Recovery | Intranasal Ketamine for Cluster Headaches and Depression | Spravato Center of Fairfax | Intransal Ketamine Center | 22304 22306

NOVA Health Recovery | Alexandria, Va 22306 | Call for esketamine and nasal ketamine as well as IV Ketamine for depression, PTSD, anxiety  703-844-0184 < Link

Intranasal Ketamine for the Relief of Cluster Headache

Ketamine’s Mechanism of Action

Ketamine (2-chlorophenyl)-2-(methylamino)-cyclohexanone hydrochloride), a human and veterinary anesthetic agent, has an extremely varied set of pharmacologic actions depending on the dosage used.1 A selective uncompetitive N-Methyl-D-aspartic acid (NMDA) glutamate receptor antagonist, the drug has been in legitimate clinical use since 1963.

When administered as an appropriate pharmacologic agent, ketamine has been shown to serve as a safe anesthetic agent. At sub-anesthetic doses, ketamine acts as an uncompetitive antagonist at ionotropic NMDA-type glutamate receptors, binding to a site on the receptor while it is open. Ionotropic glutamate receptors (iGluRs) mediate the majority of excitatory neurotransmission throughout the mammalian brain. Based on their pharmacology, there are three main classes of glutamate-activated channels:

  • α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptors (AMPARs)
  • kainate receptors
  • N-methyl-d-aspartate receptors (NMDAR).

Among ion-gated receptor subtypes (iGluRs), NMDAR are exceptional in their high unitary conductance, high Ca2+ permeability, and remarkably slow gating kinetics.

Ketamine has relatively specific effects on other glutamate subtypes. Several families of these receptors also include AMPA-type and kainate receptors, and the metabotropic family of receptors, of which many exist. NMDARs, in particular, are glutamate-gated ion channels primarily for calcium ions and are crucial for neuronal communication. NMDARs form tetrameric complexes that consist of several subunits. The subunit composition of NMDARs is subject to many changes, resulting in large numbers of receptor subtypes. Each subtype has distinct pharmacological and signaling properties.1 Interest and research is growing and abounds in defining specific functions of subtypes of the glutamate receptor system in both normal and pathological conditions in the central nervous system.

Clinical use of ketamine has led to reports of psychedelic side effects, such as hallucinations, memory defects, panic attacks, as well as nausea/vomiting, somnolence, cardiovascular stimulation and, in a minority of patients, hepatoxicity.In the author’s clinical experience, patients may feel a temporary sense of calm or fogginess after ketamine infusion.

Use in Migraine, Cluster Headache, and Neuropathic Pain Disorders

In more recent years, a very small number of clinicians, including the author, have used ketamine intravenously (IV), and in some cases, via intramuscular injection, to treat migraine, cluster headache, and various other chronic pain disorders, including mixed headache and neuropathic pain clinical syndromes.3-21 In the author’s clinic specifically, ketamine has been used via IV administration for more than 20 years to treat nearly 1,000 patients with various headache and pain disorders. These include: migraine and cluster headache flare-ups; headaches associated with orofacial pain disorders, such as trigeminal neuralgia (TN); atypical face pain; temporomandibular joint disorder (TMD); and neck pain.

Clinical use of ketamine has led to reports of psychedelic side effects, such as hallucinations, memory defects, panic attacks, as well as nausea/vomiting, somnolence, cardiovascular stimulation and, in a minority of patients, hepatoxicity. In the author’s clinical experience, patients may feel a temporary sense of calm or fogginess after a ketamine infusion.

The focus of this paper is to provide a summary of specific retrospective cases in which intranasal ketamine was used for the rescue of cluster headache in patients who had previously experienced a positive outcome from IV ketamine in the author’s outpatient clinic. Cluster headache was successfully eradicated in several patients [n = 17], prompting a mini anecdotal-based trial of rescue intranasal ketamine for continuing or new cluster headache flare-ups to be used by these patients at their home. Table I outlines the outpatient clinic’s treatment of various migraine and headache types. As shown, cluster headache was successfully eradicated in several patients [n = 17], prompting a mini anecdotal-based trial of rescue intranasal ketamine for continuing or new cluster headache flare-ups to be used by these patients at their home.

Retrospective Case Summaries

The dose of intranasal ketamine prescribed to patients ranged between 7.5 mg and 15 mg per 0.1 cc nasal spray (75 and 150 mg of ketamine per cc compounded in normal saline by a pharmacy). Patients were instructed to use one spray in the nostril of the affected side and wait 10 to 15 minutes to feel any effects, including side effects. They were to use the spray when they felt a cluster attack coming on. Patients were asked to use another spray of ketamine in the same nostril at 10- to 15-minute intervals until a sufficient degree of relief (at least 60 to 75%) was obtained for that cluster attack. If the attack still came on after about one hour, the instructions were for the patient to repeat the procedure. All patients were instructed not to drive after taking the medication and signed off on this agreement. Patients were also instructed to keep the nasal spray refrigerated when not in use; no efficacy loss was reported. Of the 17 patients who trialed the nasal spray, 11 elected not to have the intranasal ketamine compounded, or were lost to follow-up, leaving six case scenarios which are summarized herein.

Case 1

A 38-year-old male, with a 16-year history of cluster headache, including a family history of the same, had tried a number of acute and prophylactic agents with, at best, a shortening of the cluster episode. His attacks tended to flare in the spring and lasted up to three months at a time with 4 to 6 episodes per day. The attacks prevented him from working and he came to the outpatient clinic for IV treatment with ketamine, which resulted in a complete cessation after three days, with resolution of allodynia on the right side as well. He elected to try intranasal ketamine (15 mg) at the first onset of his next cluster episode. He reported pain relief and a feeling of calm after 2 to 3 sprays, with no adverse effects. Sometimes, he had to repeat the dosing regimen the next day.

Case 2

A 25-year-old woman was thrown from a horse during a competition and fractured her cervical spine, requiring surgery. The injury included syringomyelia between C3 and C7-T1 and left her with left-sided dystonia of the upper and lower body, abdomen, and chest wall, together with left-sided migraines, which she reported as new. Several times a year, she would awaken every night with left-sided cluster headache episodes, with facial allodynia, tearing, eyelid drooping, and increased dystonia and neck spasm; these occurred primarily in the winter season, with several up to six episodes in per night for a period of three to six weeks.

IV ketamine relieved most of her dystonic, cluster headache, and migraine symptoms, when complemented by IV and oral baclofen and tizanidine, as well as rescue opioids. Nasal spray ketamine was compounded, as well as buccal troches; both allowed her to continue working full-time in her hair salon. She reported no side effects while using the nasal spray ketamine. Liver function tests conducted every three to six months were unremarkable.

Cluster headache is characterized by excruciating, debilitating pain lasting from 15 to 180 minutes, or occasionally longer. The pain is typically located around or through one eye or on the temple. (Source: 123RF)

Case 3

A 55-year-old woman with episodic cluster headache and migraine (3 to 4 attacks per week) also experienced chronic neck pain and had diagnosed TN on the right side. Her cluster headache attacks started at age 27, with tearing, allodynia, and facial numbness. On occasion, her migraine would evolve into a cluster episode that came on during sleep and was seasonal as well, lasting about 2 months on average. She was not a smoker and had no family history of cluster headache but did have a family history of migraine.

She was treated successfully for migraine, right TN, and neck pain with botulinum toxin-A injections (Botox) every 3 to 5 months, supplemented by prophylactic neuropathically active medications, but no opioids. The Botox did not affect her cluster headache, except when they evolved from a migraine, and only to a slight extent (15 to 20%). Multiple acute and prophylactic therapies were attempted to resolve the cluster headache episodes to no significant avail.

IV ketamine was tried on one occasion over a period of 4 days during a cluster headache episode. As a result, the attacks were reduced from 5 per day to 1 per day, and only 1 cluster attack the following week, which was resolved with additional oral oxcarbazepine (600 mg).

The patient agreed to trial nasal spray ketamine which was compounded at 10 mg per 0.1 cc spray with the suggestion that she spray the right nostril every 10 to 15 minutes upon attack to give the medicine time to absorb from the nasal mucosa and to repeat the process until at least 75% relief was obtained. She reported being happy with this approach as it gave her control of her hardest-to-treat symptom. She also reported that her cluster episodes became less frequent over about 1 year and that her migraine and TN also improved; her Botox injection intervals grew longer over time.

Case 4

A 70-old-male, with a 40-plus year history of right-sided cluster attacks with eyelid drooping, tearing, allodynia, neck pain, and other symptoms was treated for these symptoms for many years. Opioids provided him with partial relief, at best. He had a chronic cluster headache that typically awoke him from a sound sleep at 1 or 2 am. These episodes were especially bad in the winter and during weather changes. He had a history of facial and other traumas before the headaches started, including a car accident, but no family history of cluster headache. He also had occasional migraine, about three per month, as well as chronic neck and back pain. He was treated with IV medications, including ketamine, up to 200 mg over 5 hours, with relief of his symptoms in the clinic.

He agreed to trial a compounded nasal spray of ketamine [12.5 mg per 0.1 cc] to use at each bedtime. Two sprays were indicated before each bedtime and at the first onset of any cluster headache at night. Sprays were repeated every 10 minutes until 50 to 65% relief was achieved. He took tizanidine before bedtime for neck spasm and sleep. The patient would, on occasion, repeat one or two ketamine sprays in the morning or during the day if he felt the next cluster attack coming on. As he was on frequent IV and nasal spray ketamine, his liver functions tests were routinely monitored over the course of several years; there was no observed impact.

Case 5

A 34-year-old male who worked in construction began having episodic cluster headache episodes at age 22. He had a family history of migraine and cluster headache. His attacks were season-specific, occurring mostly in the early summer of each or every other year. He described the attacks as very disabling and often awoke from a sound sleep for several weeks at a time as a result of them. He had tried several oral medications, including opioids, for suppression of symptoms without any real benefit and many side effects. When he first presented to the clinic, he trialed IV lidocaine, IV valproate sodium, and IV magnesium sulfate with only partial success in shutting down the episode.

IV ketamine was also offered at the beginning of one of his episodes, and it proved to work more effectively than other treatments. Specifically, the patient’s cluster episode duration was reduced by more than two-thirds (6 to 7 weeks to 7 to 10 days). Based on this result, he was prescribed compounded nasal spray ketamine (7.5 mg per 0.1cc spray) and instructed to use the spray once at bedtime, with additional sprays in one nostril (the affected side of the cluster headache) every 10 minutes until relief was obtained to at least 75%. The patient was also instructed to use the same approach during the day if the cluster headache returned. He used nasal spray ketamine for several years and his overall pattern became easier to treat successfully. His episodes grew further apart and he has reported only one short cluster headache episode in the past four years.

She got extinction of the cluster episode or at least 75% reductions in the cluster headache severity with up to 4-5 nasal sprays of ketamine at the dose described above, and has also noticed a shortening and diminution of the cluster headache episodes as time has gone by.

Case 6

A 51-year-old male, with a family history of cluster headache began having episodic attacks at age 18 with strong occurrences in the spring. He was a smoker. He had tried a calcium channel blocker, lithium, and other medications to little or no avail over the years. He found that triptans taken early in the course of a cluster attack, at several doses, would sometimes abort or lighten the burden of that particular cluster series.

A 3-day course of IV ketamine at the onset of one of his episodes nearly eradicated the episode, and since he lived a great distance (6 hours each way) from the clinic, he wanted to try the nasal spray form of ketamine for at-home application. He reported that a daily dose of 1500 mg of Depakote-ER often softened the arrival of his next cluster headache episode, as did prescribed triptans. However, he did not experience an end to the attack until IV ketamine had been administered.

15 mg per 0.1cc of nasal spray ketamine were compounded for this patient. He reported some nasal burning with the nasal ketamine formulation, so was advised by his pharmacist to use one drop of 2% lidocaine and orange oil as part of the prescription. This addition alleviated the side effect. The patient has successfully used this approach for many years to date. He requires 5 to 6 nasal sprays of ketamine per day, and his episodic cluster headache pattern has markedly softened and shortened in the past few years. He has reduced his dosage of Depakote-ER to 1 or 2 per day as well and attempted to stop smoking several times.

Discussion and Recommendation

The specificity of the ketamine speaks to a unique mechanism of action primarily through the blockade of the NMDA-glutamate and other close-related receptors. This treatment approach may provide insight into the distinctive involvement of this receptor family in the generation and maintenance of this and perhaps other, more rare trigeminal autonomic cephalalgias, or TACs.21

Based on this anecdotal evidence, observed retrospectively in the author’s outpatient clinic over a period of 20 years, intranasal ketamine seems to offer a legitimate, safe pharmacologic treatment for cluster headache rescue. The medication adds a new dimension to managing out-of-control cluster headache and mixed headache/pain disorders in an outpatient setting with no monitoring. Double-blind, placebo-controlled studies are needed to confirm these primarily open-label observations. It should be noted that a small number of patients (5) were given sham nasal treatment and their cluster headache did not respond.

The author found sub-anesthetic doses of intranasal ketamine to be very useful in the control of episodic and chronic cluster headache attacks, as well as in managing certain trigeminal neuralgia symptoms. On a 0 to 10 visual analog scale, pain scores were below 60 to 65% from initial baseline pain score after the use of the intranasal ketamine spray. Efficacy, as well as safety, and tolerability, of low dose IV ketamine were seen consistently in the outpatient clinic, without significant adverse effects. In the author’s opinion, therefore, ketamine may be considered when treating this clinically disabling condition. When used under controlled conditions, ketamine in a nasal spray form may offer a safe and more effective option to patients than emergency room visits and may also serve as a substitute for more standard IV-based rescue cluster headache medications.

About Cluster Headache:Cluster headache is characterized by excruciating, debilitating pain lasting from 15 to 180 minutes, or occasionally longer. The pain is typically located around or through one eye or on the temple. A series of cluster headaches can take place over several weeks to months, and may occur once or twice per year. Several of the following related symptoms may occur: lacrimation, nasal congestion, rhinorrhea, conjunctival injection, ptosis, miosis of the pupil, or forehead and facial sweating. Nausea, bradycardia and general perspiration may present as well. Attacks usually recur on the same side of the head. Cluster headaches afflict males more than females by a 2.5 to 1 ratio and have an overall prevalence of 0.4%. Onset of clusters is usually between ages 20 and 45. There is often no family history of cluster headache.

  1. Robert K, Simon C. Pharmacology and Physiology in Anesthetic Practice. 4th ed. Baltimore, MD: Lippincott, Williams & Wilkins; 2005
  2. Niesters M, Martini C, Dahan A. Ketamine for chronic pain: risks and benefits. Br J Clin Phamacol. 2014;77(2):357–367.
  3. Virginia Scott-Krusz, Jeanne Belanger, RN, Jane Cagle, LVN, Krusz, JC, Effectiveness of IV therapy in the headache clinic for refractory migraine, poster at 9th EFNS meeting Athens, Greece. 2005.
  4. Krusz, JC. Intravenous treatment of chronic daily headaches in the outpatient headache clinic. Curr Pain Headache Rep. 2006;10(1):47-53.
  5. Krusz JC, Cagle J, Belanger J, Scott-Krusz, V. Effectiveness of IV therapy for pain in the clinic, Poster P183 presented at 2nd International Congress on Neuropathic Pain Berlin, Germany. 2007
  6. Krusz JC, Cagle J, Hall S. Efficacy of IV ketamine to treat pain disorders in the pain clinic, (poster 216). J Pain. 27th Annual Scientific. American Pain Society, 2008.
  7. Krusz JC, Cagle J, Hall S. Efficacy of IV ketamine in treating refractory migraines in the clinic (poster 218). J Pain. 27th Annual Scientific. American Pain Society, 2008.
  8. Krusz JC, Cagle J, Hall S. Intramuscular (IM) ketamine for treating headache and pain flare-ups in the clinic (poster 219). J Pain. 27th Annual Scientific. American Pain Society, 2008.
  9. Krusz JC. IV ketamine in the clinic to treat Cluster Headache (poster abstract). American Academy of Neurology. Neurol. 2009;72(11):A89-90.
  10. Krusz JC, Cagle J, Scott-Krusz VB. Ketamine for treating multiple types of headaches (poster). 14th Congress International Headache Society. Cephalalgia. 2009;29(Suppl 1)163.
  11. Krusz JC. Difficult Migraine Patient. Pract Pain Manage. 2011;11(4):16.
  12. Krusz JC, Cagle J. IV Ketamine: Rapid Treatment for All TAC Subtypes in the Clinic, Abstract Poster #72, 15th Congress of the International Headache Society, Berlin, Germany, 2011.
  13. Krusz JC, Cagle J. IM ketamine for intractable headaches and migraines (poster abstract). American Headache Society Annual Meeting, Los Angeles, CA, 2012.
  14. Krusz JC. Traumatic Brain Injury: Treatment of Post-traumatic Headaches. Pract Pain Manage. 2013;13(5):57-68.
  15. Krusz JC, Cagle J, Belanger J, Scott-Krusz V. Effectiveness of IV therapy for pain in the clinic, Poster P183. European J Pain:11, Suppl 1, pS80, presented at 2nd Int’l Congress on Neuropathic Pain, Berlin, Germany. 2007.
  16. Krusz JC, Cagle J, Hall S. Efficacy of IV ketamine to treat pain disorders in the pain clinic, (poster 216). J Pain, 9: Suppl 2, P30, 27th Annual Scientific. American Pain Society. 2008.
  17. Krusz JC. Ketamine IV in an outpatient setting: effective treatment for neuropathic pain syndromes (poster #378). 32nd Annual Scientific Meeting, American Pain Society, New Orleans, 2013.
  18. Krusz JC. Ketamine IV – for CRPS, TN/TMD and other neuropathic pain in the outpatient clinic (poster #524). 4th International Congress on Neuropathic Pain, Toronto, Ontario, 2013.
  19. Krusz JC. The IV ketamine experience: treatment of migraines, headaches and TAC. JAMA Neurol. 2018
  20. Matharu MS, Goadsby PJ. Trigeminal Autonomic Cephalalgias: Diagnosis and Management. In: Silberstein SD, Lipton RB, Dodick DW, eds. Wolff’s Headache and Other Head Pain. 8th ed. New York, NY: Oxford Univ Press; 2008:379-430.
  21. Johnson JW, Glasgow NG, Povysheva NV. Recent insights into the mode of action of memantine and ketamine. Curr Opin Pharmacol. 2015 ;20:54-63. 

The Path from Episodic to Chronic Migraine

Although episodic migraine and chronic migraine are common, they represent distinct types of headaches on the migraine pain spectrum.1 Factors involved in the transformation from episodic to chronic migraine include frequency of episodes, failure to optimize acute treatment, overuse of acute migraine medication, lower socioeconomic status, obesity, and being female.1,2 The most common technique for managing these headache conditions is pharmacologic, however, medication overuse is also the most common reason that episodic migraine may evolve into chronic migraine, often resulting in medicine overuse headache (MOH).

According to Lipton, et al,3 patients have reported that their acute treatment of episodic migraine was poorly managed as measured by the Migraine Treatment Optimization Questionnaire, with 6.8% of patients developing chronic migraine within one year compared to 1.9% of patients reporting optimized acute treatment. These results suggested the need for more effective acute treatment strategies to manage symptoms associated with episodic and chronic type migraine. In response, several studies have since shown a potential alternative treatment involving the sphenopalatine ganglion (SPG) to be effective in reducing episodes of chronic migraine (see Figure 1).

Figure 1. The sphenopalatine ganglion (SPG). (Image courtesy of authors).

The SPG is the largest neurological ganglion outside the brain, located within the pterygopalatine fossa at the posterior attachment of the middle turbinate. This ganglion has sensory, parasympathetic, and sympathetic components that house the trigeminal nerve, branches of the palatine nerves, and various sympathetic and parasympathetic automatic branches all of which innervate the cranial cavities (eg, nose, mouth) as well as facial areas, and the nasal and pharyngeal glands.4 Based on the SPG’s anatomy and physiology, it has become evident that many associated symptoms of chronic migraine may be managed by targeting the SPG using alternative methods that aim to decrease activity in this region.

Migraine may be related, at least in part, to a hyper-excited SPG. Stimulation of the SPG has been shown to induce a pathophysiological response seen in migraine attacks, including vasodilation of intra- and extra-cranial arteries, release of substance P and neurokinin A, as well as activation of meningeal nociceptors, which may be contributing to the pain.4

Treatment Alternatives
Neurological Blockage of the SPG

Alternative treatments targeting the SPG have been developed as a means of lessening the symptoms associated with migraine. One trialed approach is a neurological blockade at the SPG with bupivacaine using a nasal applicator5,6 and topical lidocaine applied with a deep nasal anesthetic applicator (DNAA).7 Cady, et al, published two studies utilizing the device to deliver bupivacaine to the mucosa of the SPG. The first, primarily a safety study, was designed to determine acute effects. The researchers reported the bupivacaine treatment group (n = 26) decreased from pre-treatment 3.18 ± 2.79 to post-treatment at 15 minutes 2.53 ± 2.61, 30 minutes 2.41 ± 2.61, and 24 hours 2.85 ± 2.74.5

The second study was designed to determine the long-term effects of bupivacaine by delivering a set of 12 treatments over a period of six weeks. Results demonstrated that the bupivacaine treatment group (n = 25) had a significant decrease in the number of headaches in a month from 23.15 ± 5.12 to 17.44 ± 9.08 compared to 24.75 ± 4.35 to 22.82 ± 5.36 in a sham group, which was administered saline. Additionally, the average pain scores reported by the subjects in the prior 24 hours decreased from pre-treatment of 4.92 ± 2.2 to 2.86 ± 2.62 at six months after the last bupivacaine treatment.6

Lee, et al, reported 59 out of 66 cases treated with 26% lidocaine applied with DNAA had an average decrease of 4.9 pain points and 4.2 points at 15 minutes and 60 minutes post-application, respectively.7 The treatment provided rapid relief of the headache pain and decreased activity of the SPG, thereby reducing the pain associated with the migraine.5-7

Similarly, an inhibitory dose of photobiomodulation (PBM) appears to have a similar efficacy in decreasing SPG activity and may reduce migraine pain and frequency by inhibiting nerve conduction of type C pain fibers.8,9

Moving away from pharmacologic methods to treating migraine. (Source: 123RF)

Photobiomodulation

Adopted by the North American Association of Photobiomodulation Therapy, photobiomodulation refers to light therapy treatments that utilize non-ionizing light sources in the visible and infrared spectrum.8 PBM is a non-thermal process that involves endogenous chromophores which elicit photophysical and photochemical events. These events theoretically lead to beneficial therapeutic outcomes, including the alleviation of pain or inflammation and immunomodulation, as well as the promotion of wound healing and tissue regeneration.8 More specifically, PBM emits photons of light that penetrate the skin and stimulate endogenous light receptors, which result in a physiological response. Low doses of PBM stimulate tissue healing and increase blood flow9 while higher doses tend to have an inhibitory effect, which may be used therapeutically to decrease pain.9

For example, low doses of light that are delivered to the tissue stimulate the cytochrome C oxidase (CCO) within the mitochondria, resulting in an increase in adenosine triphosphate (ATP) and a release of nitric oxide (NO) and reactive oxygen species (ROS).9 The ATP provides an increase in energy availability within the cells. When NO is released from CCO and from blood vessels, the result is an increase in ATP production and vasodilation. When ROS is in low concentrations, it activates the transcription factors, which lead to cell proliferation and growth.9

The authors trialed PBM on three patients (ages 42, 53, and 72) with a history of chronic migraine. Each patient had suffered from two to five migraine attacks per week for at least the prior 10 years (see Table I). Each was successfully treated using a PBM protocol to the SPG.

Initial reported pain levels ranged from 8 to 10 out of a 10-point pain scale. All three patients completed daily activities with difficulties due to frequent and painful symptoms. All patients had previously attempted pharmacological methods of treatment with little to no relief, or with additional side effects from MOH that hindered daily functioning.

Each PBM treatment consisted of applying a laser puncture utility probe attached to a PBM-transducer (Multi Radiance Medical) that delivered the photons to the SPG. The probe was placed just inside each nostril pointing toward the posterior nasal cavity where the SPG is located (see Figure 2). The treatment frequency and number of overall treatments were tailored to each patient’s responsiveness.

Figure 2. Inhibitory photobiomodulation treatment to the sphenopalatine ganglion with probe (image courtesy of authors).

Each treatment lasted 180 seconds per nostril (23.9 joules, 0.0382 watts, 6.87J/chronic). The device characteristics were as follows: wavelength super pulsed laser 905 nm; infrared 875 nm; Red 670 nm; total power, 25W, SPL variable frequency: 1000 Hz and beam spot size 0.4. The patients were evaluated for migraine frequency and intensity both pre- and post-treatment, and throughout the duration of the treatment.

Patient 1: This 42-year old male developed a chronic migraine condition following a traumatic head injury, resulting in a skull fracture. His regimen encompassed three PBM treatments over a 4-week period. After the first treatment, the patient experienced no migraine for 2 weeks. His reported migraine pain decreased from 8 out of 10 to a 0 out of 10 after each treatment. After the full course, the patient reported no migraine for another 2 weeks and self-discharged from our care (follow-up was not possible).

Patient 2: A 53-year-old female was scheduled to receive a course of six PBM treatments over 21 days. The patient reported reduced frequency and intensity of migraine with aura after the first six treatments. This patient did not miss any work during the treatment period. It is worth noting that prior to starting the PBM treatments, Patient 2 had missed work due to pain intensity of her migraine and what she reported as mental dullness as a result of the medication used to control her migraine symptoms. Due to the decrease in frequency and intensity of her migraine attacks, PBM treatments were reduced to one per week for 4 weeks. Patient 2 was migraine-free at discharge after 8 weeks of total treatment. At 90-day follow-up, the patient reported that she had not experienced a post-treatment migraine.

Patient 3: A 72-year-old female underwent a course of eight PBM treatments over 4 weeks (two applications per week). Patient 3 reported that she was migraine free for 10 days after the month-long treatment was completed. She was prescribed a second round of treatments, which were then reduced to weekly for another 4 weeks. The patient reported being migraine-free during the continued treatment period. There was no 90-day follow-up for this patient.

Discussion and Steps Forward

Two of the main factors that may cause episodic migraine attacks to become chronic are medication overuse and improper care for acute attacks.1-3 As demonstrated in the three cases herein, PBM treatments to the SPG were shown to be effective in decreasing pain ratings from 8 out of 10 to 0 out of 10 after each treatment. If PBM could be used effectively to treat episodic migraine, patients may not overuse medications, which may ultimately prevent the transition of episodic to chronic migraine.

Overall, the PBM treatments described herein were deemed successful in treating chronic migraine (see Table I for details). Patient 1 started with two migraine attacks per week and decreased his episodes to zero attacks per week after a course of three treatments over 4 weeks. Patient 2 reduced her migraine frequency from two to three per week to zero after 10 treatments over 12 weeks. Patient 3, who had previously experienced three to five migraine attacks per week for 59 years, reduced her attack frequency to zero migraine attacks per week after 12 treatments over 8 weeks. None of the patients reported any side effects and tolerated the treatments well.

Similar to neurologic blocks of the sphenopalatine ganglion, the response to PBM is bi-phasic, stimulatory or inhibitory, and dose dependent.9 There has been strong evidence supporting PBM inhibition of acute, chronic, and neurological pain.10 As noted, light may reduce the formation of inflammatory proteins associated with pain including prostaglandin, cox 2 mRNA, and TNF α.10 Additionally, PBM works to inhibit nerve conduction along the AΔ and C nerve fibers, which are the main nerve fiber types that conduct pain.10

It appears that the SPG and associated nerves are hyperactive during migraine attacks, as suggested by Khan, et al.4 An inhibitory dose of PBM seems to restore the SPG and associated nerves back to their normal physiological levels. A similar occurrence was reported by Cady, et al,5-6 and Lee, et al,7 after treating migraine (with bupivacaine and lidocaine, respectively) applied to the posterior nasal cavity directed at the SPG. There is some evidence that the SPG may also be associated with refractory chronic post-traumatic headaches.10 For example, Sussman, et al, successfully treated a post-concussion headache utilizing intranasal lidocaine application to the SPG.11

In this case presentation, use of PBM treatment reduced migraine frequency to zero episodes per week in patients with a 10-year or greater history of migraine for whom medication failed to manage symptoms effectively. Due to a decrease in pain and episode occurrence, all three patients were able to improve their daily function following completion of individualized PBM treatment regimen to block the SPG. With a growing demand for non-pharmacological treatments for migraine pain, photobiomodulation may be a noninvasive therapeutic option for chronic migraine. To demonstrate the efficacy of this treatment protocol, large randomized control trials should be completed to confirm validity and long-term effects.

KETAMINE INFUSION CENTER VIRGINIA| 703-844-0184 | NOVA HEALTH RECOVERY | FAIRFAX, VA 22101 | Loudoun County, Va 20176 | Dr. Send | 703-844-0184 | ESKETAMINE PROVIDER VIRGINIA | ESKETAMINE CENTER | ESKETAMINE DOCTOR | 703-844-0184 | ARLINGTON, VIRGINIA 22207 22213 | NASAL SPRAY KETAMINE AND THE FDA APPROVAL| DR. SENDI | ESKETAMINE PROVIDER | NASAL SPRY KETAMINE THERAPY | KETAMINE FOR TREATMENT OF DEPRESSION, PTSD, ANXIETY | KETAMINE INFUSION CENTER | KETAMINE DEPRESSION | KETAMINE PTSD | EMAIL@NOVAHEALTHRECOVERY.COM | 2220 22182 23103 22039 20197 20184 22101 22102 22066 | CBD DOCTOR CBD CENTER | 703-844-0184 | FAIRFAX, VA 22034 | 22308 | ESKETAMINE LOUDOuN COUNTY, VA | ESKETAMINE ANNANDALE, VA | ESKETAMINE RICHMOND | ESKETAMINE VIRGINIA | KETAMINE SPRAY PROVIDER IN NORTHERN VIRGINIA 22308 | KETAMINE INFUSION CENTER | KETAMINE VIRGINIA | ESKETAMINE VIRGINIA | 703-844-0184 FOR AN APPOINTMENT | CBD PROVIDER | CBD CENTER | CBD VIRGINIA | DR. SENDI | NORTHERN VIRGINIA KETAMINE | KETAMINE CENTER |MAGNESIUM AND COPPER AND DEPRESSION | NEW TREATMENTS FOR DEPRESSION | LOUDOUN COUNTY KETAMINE 703-844-0184 NORTHERN VIRGINIA | Arlington, Va Ketamine Infusion Center

NOVA Health Recovery | Alexandria, Va 22306 | Call for esketamine and nasal ketamine as well as IV Ketamine for depression, PTSD, anxiety  703-844-0184 < Link

Ketamine Virginia Link

NOVA Health Recovery | Alexandria, Va 22306 | Call for esketamine and nasal ketamine as well as IV Ketamine for depression, PTSD, anxiety  703-844-0184 < Link

Ketamine Virginia Link

Ketamine Works as a Fast-Acting Antidepressant, But the Full Effects Are Still Unknown

Ketamine Works as a Fast-Acting Antidepressant, But the Full Effects Are Still Unknown

etamine leads something of a double life, straddling the line between medical science and party drug. Since it’s invention in the early 1960s, ketamine has enjoyed a quiet existence as a veterinary and pediatric anesthetic given in high doses. But in a second, wilder life, ketamine’s effects at lower doses—a profound sense of dissociation from self and body—became an illicit favorite among psychedelic enthusiasts. Pioneering neuroscientist John Lilly, who famously attempted to facilitate communication between humans and dolphins, used the drug in the late 1970s during experiments in sensory deprivation tanks. By the 1990s, the drug had made its way to the dance floor as “special K.”

More recently, ketamine has taken on a third, wholly unexpected role. Since the early 2000s, the drug has been studied as a uniquely powerful medication for treating severe depression and obsessive-compulsive disorder (OCD). When given as an intravenous infusion, ketamine can lift symptoms of depression and OCD from patients who fail to respond to common antidepressants like Prozac and even resist treatments like electroconvulsive therapy (ECT).

Exactly how ketamine produces antidepressant effects remains unclear, however. Antidepressants like Prozac are Serotonin Reuptake Inhibitors (SSRIs) that increase levels of the neurotransmitter serotonin in the brain, which is believed to boost mood. Ketamine’s main mechanism of action to produce dissociative anesthetic effects, on the other hand, depends on another neurotransmitter, glutamate.

“The prevailing hypothesis for ketamine’s antidepressant effect is that it blocks a receptor (or docking port) for glutamate,” says Carolyn Rodriguez, a professor of psychiatry at Stanford who has conducted some of the pioneering research into ketamine as an OCD treatment.

However, new research suggests that ketamine’s influence on glutamate receptors, and specifically the NMDA receptor, may not be the sole cause of its antidepressant effects. According to a recent study in the American Journal of Psychiatry by Rodriguez and her Stanford colleagues, ketamine might also activate a third system in the brain: opioid receptors.

Ketamine is known to bind weakly to the mu opioid receptor, acting as an agonist to produce a physiological response at the same site in the brain where narcotics like morphine exert their influence. It’s also known that opioids can have antidepressant effects, says Alan Schatzberg, a professor of psychiatry at Stanford and co-author of the new study.

It never made sense to Schatzberg that ketamine’s antidepressant effects were a result of blocking the glutamate receptors, as attempts to use other glutamate-blocking drugs as antidepressants have largely failed. The Stanford psychiatrist, who has spent his career studying depression, wondered if researchers were unknowingly activating opioid receptors with ketamine.

“You could test this by using an antagonist of the opioid system to see if you blocked the effect in people who are ketamine responders,” he says. “And that’s what we did.”

The researchers enlisted 12 subjects with treatment-resistant depression and gave them either an infusion of ketamine preceded by a placebo, or ketamine preceded by a dose of naltrexone, an opioid receptor blocker. Of those, seven subjects responded to the ketamine with placebo, “and it was very dramatic,” Schatzberg says, with depression lifting by the next day. “But in the other condition, they showed no effect,” suggesting it was the opioid receptor activity, not blocking glutamate receptors, that was responsible.

While opioid blockers prevented ketamine from activating the associated receptors, it did not block the drugs dissociative effects, suggesting dissociation alone won’t affect depression. “It’s not that, ‘hey, we’ll get you a little weird and you’ll get the effect,’” Schatzberg says.

The appeal of ketamine’s use as an antidepressant is clear enough. While more typical antidepressants may require six to eight weeks to produce benefits, ketamine works within hours.

“Our patients are asked to hang in there until the medication and talk therapy takes effect,” says Carlos Zarate, chief of the experimental therapeutics and pathophysiology branch of the National Institute of Mental Health (NIMH) who was not associated with the new study. While waiting for traditional treatments to kick in, patients “may lose their friends or even attempt suicide.”

But the study linking ketamine to opioid activity means an extra dose of caution is required. While ketamine acts quickly, the anti-depressive effects of the drug only last for a few days to a week, meaning repeat doses would be needed in practice. Researchers and clinicians should consider the risk of addiction in long-term use, Schatzberg says. “You’re going to eventually get into some form of tolerance I think, and that’s not good.”

However, the new finding is based on just seven subjects, and it still needs to be replicated by other scientists, says Yale professor of psychiatry Greg Sanacora, who was not involved in the new study. And even if the trial is replicated, it would not prove ketamine’s opioid activity is responsible for its antidepressant effects.

“It doesn’t show that at all,” says Sanacora, who studies glutamate, mood disorders and ketamine. “It shows that the opioid system needs to be functioning in order to get this response.”

Sanacora compares the new study to using antibiotics to treat an ear infection. If you administered an additional drug that blocks absorption of antibiotics in the stomach, you would block treatment of the ear infection, but you wouldn’t conclude that antibiotics fight ear infections through stomach absorption—you just need a normally functioning stomach to allow the antibiotic to do its job. Similarly, opioid receptors might need to be functioning normally for ketamine to produce antidepressant effects, even if opioid activity is not directly responsible for those effects.

Complicating matters further, placebos often cause patients to experience less pain, but opioid blockers like naltrexone have been shown to prevent this response, according to Sanacora. It could be, he suggests, that all the apparatus of the clinic—the nursing staff, the equipment—exerted a placebo effect that is mediated by the brain’s opioid system, and the patients who received naltrexone simply did not respond to that placebo effect

“That’s a very important and powerful tool that is in all of medicine, not just in psychiatry,” Sanacora says. “And we know that the opiate system is involved, to some extent, in that type of response.”

It’s also possible, the researchers note in the paper, that ketamine’s action at the glutamate receptor is still important. “Ketamine acts in three distinct phases—rapid effects, sustained effects and return to baseline,” Rodriguez says. Opioid signaling may turn out to mediate ketamine’s rapid effects, while “the glutamate system may be responsible for the sustaining effects after ketamine is metabolized.”

One interpretation is that ketamine blocks glutamate receptors on neurons that are inhibitory, meaning they signal other neurons to fire fewer signals. By blocking these neurons from firing, ketamine may enhance glutamate activity in the rest of the brain, producing anti-depressive effects that persist after the opioid activity dies down.

“The reality is it’s in a gray zone,” Sanacora says. “This is just one small piece of a very large puzzle or concern that we really need to look at the data in total.”

That data is forthcoming. Results from a Janssen Pharmaceuticals clinical trial using esketamine, an isomer of ketamine, and involving hundreds of subjects will soon become public, according to Sanacora, who has consulted for the company. And at NIMH, Zarate and colleagues are studying hydroxynorketamine, a metabolite of ketamine that may provide the same benefits but without the dissociative side effects

Ketamine Works as a Fast-Acting Antidepressant, But the Full Effects Are Still Unknown

A new study suggests that ketamine activates the brain’s opioid receptors, complicating its use to treat clinical depression

Ketamine Syringe
Ketamine syringe, 10mg held by a healthcare professional. (Peter Cripps / Alamy Stock Photo)

By Jon KelveySEPTEMBER 11, 2018777110231.1K

Ketamine leads something of a double life, straddling the line between medical science and party drug. Since it’s invention in the early 1960s, ketamine has enjoyed a quiet existence as a veterinary and pediatric anesthetic given in high doses. But in a second, wilder life, ketamine’s effects at lower doses—a profound sense of dissociation from self and body—became an illicit favorite among psychedelic enthusiasts. Pioneering neuroscientist John Lilly, who famously attempted to facilitate communication between humans and dolphins, used the drug in the late 1970s during experiments in sensory deprivation tanks. By the 1990s, the drug had made its way to the dance floor as “special K.”

More recently, ketamine has taken on a third, wholly unexpected role. Since the early 2000s, the drug has been studied as a uniquely powerful medication for treating severe depression and obsessive-compulsive disorder (OCD). When given as an intravenous infusion, ketamine can lift symptoms of depression and OCD from patients who fail to respond to common antidepressants like Prozac and even resist treatments like electroconvulsive therapy (ECT).

Exactly how ketamine produces antidepressant effects remains unclear, however. Antidepressants like Prozac are Serotonin Reuptake Inhibitors (SSRIs) that increase levels of the neurotransmitter serotonin in the brain, which is believed to boost mood. Ketamine’s main mechanism of action to produce dissociative anesthetic effects, on the other hand, depends on another neurotransmitter, glutamate.

“The prevailing hypothesis for ketamine’s antidepressant effect is that it blocks a receptor (or docking port) for glutamate,” says Carolyn Rodriguez, a professor of psychiatry at Stanford who has conducted some of the pioneering research into ketamine as an OCD treatment.

However, new research suggests that ketamine’s influence on glutamate receptors, and specifically the NMDA receptor, may not be the sole cause of its antidepressant effects. According to a recent study in the American Journal of Psychiatry by Rodriguez and her Stanford colleagues, ketamine might also activate a third system in the brain: opioid receptors.

Ketamine is known to bind weakly to the mu opioid receptor, acting as an agonist to produce a physiological response at the same site in the brain where narcotics like morphine exert their influence. It’s also known that opioids can have antidepressant effects, says Alan Schatzberg, a professor of psychiatry at Stanford and co-author of the new study.

It never made sense to Schatzberg that ketamine’s antidepressant effects were a result of blocking the glutamate receptors, as attempts to use other glutamate-blocking drugs as antidepressants have largely failed. The Stanford psychiatrist, who has spent his career studying depression, wondered if researchers were unknowingly activating opioid receptors with ketamine.

“You could test this by using an antagonist of the opioid system to see if you blocked the effect in people who are ketamine responders,” he says. “And that’s what we did.”

The researchers enlisted 12 subjects with treatment-resistant depression and gave them either an infusion of ketamine preceded by a placebo, or ketamine preceded by a dose of naltrexone, an opioid receptor blocker. Of those, seven subjects responded to the ketamine with placebo, “and it was very dramatic,” Schatzberg says, with depression lifting by the next day. “But in the other condition, they showed no effect,” suggesting it was the opioid receptor activity, not blocking glutamate receptors, that was responsible.

While opioid blockers prevented ketamine from activating the associated receptors, it did not block the drugs dissociative effects, suggesting dissociation alone won’t affect depression. “It’s not that, ‘hey, we’ll get you a little weird and you’ll get the effect,’” Schatzberg says.

The appeal of ketamine’s use as an antidepressant is clear enough. While more typical antidepressants may require six to eight weeks to produce benefits, ketamine works within hours.

“Our patients are asked to hang in there until the medication and talk therapy takes effect,” says Carlos Zarate, chief of the experimental therapeutics and pathophysiology branch of the National Institute of Mental Health (NIMH) who was not associated with the new study. While waiting for traditional treatments to kick in, patients “may lose their friends or even attempt suicide.”

<

A treatment that works within 24 hours? “That’s huge.”

A vial of ketamine. The drug is used primarily as an anesthetic but is gaining popularity as an effective antidepressant.
A vial of ketamine. The drug is used primarily as an anesthetic but is gaining popularity as an effective antidepressant. (Wikimedia Commons)

But the study linking ketamine to opioid activity means an extra dose of caution is required. While ketamine acts quickly, the anti-depressive effects of the drug only last for a few days to a week, meaning repeat doses would be needed in practice. Researchers and clinicians should consider the risk of addiction in long-term use, Schatzberg says. “You’re going to eventually get into some form of tolerance I think, and that’s not good.”

However, the new finding is based on just seven subjects, and it still needs to be replicated by other scientists, says Yale professor of psychiatry Greg Sanacora, who was not involved in the new study. And even if the trial is replicated, it would not prove ketamine’s opioid activity is responsible for its antidepressant effects.

“It doesn’t show that at all,” says Sanacora, who studies glutamate, mood disorders and ketamine. “It shows that the opioid system needs to be functioning in order to get this response.”

Sanacora compares the new study to using antibiotics to treat an ear infection. If you administered an additional drug that blocks absorption of antibiotics in the stomach, you would block treatment of the ear infection, but you wouldn’t conclude that antibiotics fight ear infections through stomach absorption—you just need a normally functioning stomach to allow the antibiotic to do its job. Similarly, opioid receptors might need to be functioning normally for ketamine to produce antidepressant effects, even if opioid activity is not directly responsible for those effects.

Complicating matters further, placebos often cause patients to experience less pain, but opioid blockers like naltrexone have been shown to prevent this response, according to Sanacora. It could be, he suggests, that all the apparatus of the clinic—the nursing staff, the equipment—exerted a placebo effect that is mediated by the brain’s opioid system, and the patients who received naltrexone simply did not respond to that placebo effect.

“That’s a very important and powerful tool that is in all of medicine, not just in psychiatry,” Sanacora says. “And we know that the opiate system is involved, to some extent, in that type of response.”

It’s also possible, the researchers note in the paper, that ketamine’s action at the glutamate receptor is still important. “Ketamine acts in three distinct phases—rapid effects, sustained effects and return to baseline,” Rodriguez says. Opioid signaling may turn out to mediate ketamine’s rapid effects, while “the glutamate system may be responsible for the sustaining effects after ketamine is metabolized.”

One interpretation is that ketamine blocks glutamate receptors on neurons that are inhibitory, meaning they signal other neurons to fire fewer signals. By blocking these neurons from firing, ketamine may enhance glutamate activity in the rest of the brain, producing anti-depressive effects that persist after the opioid activity dies down.

“The reality is it’s in a gray zone,” Sanacora says. “This is just one small piece of a very large puzzle or concern that we really need to look at the data in total.”

That data is forthcoming. Results from a Janssen Pharmaceuticals clinical trial using esketamine, an isomer of ketamine, and involving hundreds of subjects will soon become public, according to Sanacora, who has consulted for the company. And at NIMH, Zarate and colleagues are studying hydroxynorketamine, a metabolite of ketamine that may provide the same benefits but without the dissociative side effects.

The ultimate goal of all this research is to find a ketamine-like drug with fewer liabilities, and that aim is bringing researchers back to the fundamentals of science.

“For me, one of the exciting parts of this study is that it suggests that ketamine’s mechanism is complicated, it acts on different receptors beyond glutamate and is the start of this exciting dialogue,” Rodriguez says. “Sometimes great science raises more questions than answers.”

KETAMINE INFUSION CENTER VIRGINIA| 703-844-0184 | NOVA HEALTH RECOVERY | Fairfax, VA 22101 | ESKETAMINE PROVIDER VIRGINIA | ESKETAMINE CENTER | ESKETAMINE DOCTOR | 703-844-0184 | ARLINGTON, VIRGINIA 22207 22213 | NASAL SPRAY KETAMINE AND THE FDA APPROVAL| DR. SENDI | ESKETAMINE PROVIDER | NASAL SPRY KETAMINE THERAPY | KETAMINE FOR TREATMENT OF DEPRESSION, PTSD, ANXIETY | KETAMINE INFUSION CENTER | KETAMINE DEPRESSION | KETAMINE PTSD | EMAIL@NOVAHEALTHRECOVERY.COM | 2220 22182 23103 22039 20197 20184 22101 22102 22066 | CBD DOCTOR CBD CENTER | 703-844-0184 | FAIRFAX, VA 22034 | 22308 | ESKETAMINE LOUDON COUNTY, VA | ESKETAMINE ANNANDALE, VA | ESKETAMINE RICHMOND | ESKETAMINE VIRGINIA | KETAMINE SPRAY PROVIDER IN NORTHERN VIRGINIA 22308 | KETAMINE INFUSION CENTER | KETAMINE VIRGINIA | ESKETAMINE VIRGINIA | 703-844-0184 FOR AN APPOINTMENT | CBD PROVIDER | CBD CENTER | CBD VIRGINIA | DR. SENDI | NORTHERN VIRGINIA KETAMINE | KETAMINE CENTER |Magnesium and Copper and Depression | New treatments for depression | Loudon County Ketamine 703-844-0184 Northern Virginia

NOVA Health Recovery | Alexandria, Va 22306 | Call for esketamine and nasal ketamine as well as IV Ketamine for depression, PTSD, anxiety  703-844-0184 < Link

Ketamine Virginia Link

What is interesting for the above articles is the Magnesium and copper components associated with Depression.

The most common biomarkers found are generally related to the regulation of lipid metabolism, control of immunoinflammatory response, control of vascular function, inter and intra-cellular communication. We additionally found that biomarkers related to nutrient sensing and proteostasis are related to LLD. Altogether, these studies suggest that there are core abnormalities, which are present in the first depressive episode, continue over mid-life and late-life, and are persistent even after successful antidepressant treatment. This view is consistent with the presence of biological “scars” in depression that render individuals with major depression , age, more vulnerable to systemic illness, disability, cognitive impairment and other negative health outcomes, which are not fully ameliorated despite successful antidepressant treatment . Robust machine learning techniques showed that three proteins (C-peptide, fatty acid-binding protein, and ApoA-IV) have a very high accuracy at discriminating individuals with remitted LLD compared to never depressed control participants. In fact, our study showed the highest discriminatory power of any previous studies, including those for schizophrenia, bipolar disorder or other common mental illnesses .

http://software.broadinstitute.org/gsea/msigdb

. LLD is associated with significantly higher levels of pro-inflammatory and lower levels of anti-inflammatory markers, reduced neurotrophic support, and higher levels of oxidative stress markers and activity of glycogen synthase kinase

I nflammation is a key pathway in the initiation and progression of coronary heart disease (CHD), and inflammatory biomarkers such as C-reactive protein (CRP) and interleukin-6 (IL-6) have shown consistent associations with incident CHD events (1). In recent years, myeloperoxydase (MPO) has drawn growing attention as a new inflammatory biomarker of CHD risk (2–4). Myeloperoxydase is an enzyme produced by activated leukocytes during the innate immune response that catalyzes the formation of reactive oxidant species. It is present in human atherosclerotic plaques and exhibits a variety of proatherogenic properties (5). Increased inflammation is a key mechanism through which several risk factors increase CHD risk (6). Depression is a risk factor for CHD (7), and whether increased inflammation is involved has attracted considerable interest (8). A role of inflammation in depression was first proposed by Smith in 1991 (9). Since then, several studies have reported a link between major depressive disorder (MDD) or depressive symptoms and a variety of inflammatory and immune biomarkers (10 –15). However, others have found no independent association (16) or mixed results (17–19), and one study even found lower levels of inflammatory biomarkers in depressed cardiac outpatients (20). It is increasingly recognized that the relationship between depression and inflammation is more complex than initially conceived (21). Depression may cause inflammation through altered neuroendocrine function and central adiposity (22). However, depression may also be a consequence of inflammation, since a pathogenic role of inflammatory cytokines in the etiology of depression has been described (23). Although given less consideration, a third possibility is that depression is a marker of some other underlying dimension that is separately linked to depression and inflammation. Recently, it has been proposed that such underlying factor could be a specific genetic makeup (24,25). Evidence for a common genetic substrate for depression and inflammation would be of substantial scientific and clinical interest, because it would suggest that a common biological pathway links these two conditions. We found that MDD is associated with higher levels of inflammation and that this association is particularly robust for MPO, an inflammatory biomarker that was never studied before in relation to depression. However, we also found evidence for genetic confounding in this association. Our results are consistent with the hypothesis that there is a common genetic substrate linking MDD and inflammation, suggesting that these two phenotypes share a common pathophysiological mechanism. MPO, Other Inflammatory Markers, and Depression Myeloperoxydase is an enzyme of the innate immune system, which exhibits a wide array of proatherogenic features (5,34). Myeloperoxydase is secreted upon leukocyte activation, contributing to innate host defenses. However, it also increases oxidative stress, thereby contributing to tissue damage during inflammation and atherogenesis. Myeloperoxydase generates numerous reactive oxidants that cause lipid peroxidation, posttranslational modifications to target proteins, and decrease of nitric oxide bioavailability, resulting in oxidation of LDL and apolipoprotein A1, protein carbamylation, and endothelial dysfunction (5,35,36). Transgenic mice containing the human MPO gene show significantly larger atherosclerosis buildup than the wild-type (34,37). In humans, individuals with total or subtotal MPO deficiency, a defect with a frequency of 1 in every 2000 to 4000 whites, are less likely to develop cardiovascular diseases, and those harboring a promoter polymorphism associated with a twofold reduction in MPO expression appear cardioprotected (5,38 – 40). Consistent with these proatherogenic properties, MPO has received growing attention as a novel risk marker for future cardiovascular events (2– 4). Oxidative stress has also been linked to neuronal degeneration in the central nervous system (41,42). Myeloperoxydase is both expressed and enzymatically active in the human brain (43,44) and is associated with Alzheimer’s disease (44). Previous studies have described abnormalities of oxidant-antioxidant systems in MDD suggestive of higher oxidative stress. For example, elevated levels of antioxidant enzymes, particularly superoxide dismutase (SOD), and biomarkers of oxidation, such as malondialdehyde, were found in plasma, red blood cells, or other peripheral tissues of acutely depressed MDD patients compared with control subjects (45– 47). In some cases (46,47), but not others (45), these abnormalities were reduced with antidepressant treatment. Superoxide dismutase coenzyme concentrations are also higher in postmortem brain tissue (prefrontal cortex) of MDD patients than in control brains (48).

MOOD FOOD Project

KETAMINE INFUSION CENTER VIRGINIA| 703-844-0184 | NOVA HEALTH RECOVERY | ARLINGTON, VA 22101 | ESKETAMINE PROVIDER Virginia | ESKETAMINE CENTER | ESKETAMINE DOCTOR | 703-844-0184 | ARLINGTON, VIRGINIA 22207 22213 | Nasal Spray Ketamine and the FDA approval| DR. SENDI | ESKETAMINE PROVIDER | NASAL SPRY KETAMINE THERAPY | KETAMINE FOR TREATMENT OF DEPRESSION, PTSD, ANXIETY | KETAMINE INFUSION CENTER | KETAMINE DEPRESSION | KETAMINE PTSD | EMAIL@NOVAHEALTHRECOVERY.COM | 2220 22182 23103 22039 20197 20184 22101 22102 22066 | CBD DOCTOR CBD CENTER | 703-844-0184 | FAIRFAX, VA 22034 | 22308 | ESKETAMINE LOUDON COUNTY, VA | ESKETAMINE ANNANDALE, VA | ESKETAMINE RICHMOND | ESKETAMINE VIRGINIA | KETAMINE SPRAY PROVIDER IN NORTHERN VIRGINIA 22308 | KETAMINE INFUSION CENTER | KETAMINE VIRGINIA | ESKETAMINE VIRGINIA | 703-844-0184 FOR AN APPOINTMENT | CBD PROVIDER | CBD CENTER | CBD VIRGINIA | DR. SENDI | Northern Virginia Ketamine | Ketamine Center

NOVA Health Recovery | Alexandria, Va 22306 | Call for esketamine and nasal ketamine as well as IV Ketamine for depression, PTSD, anxiety  703-844-0184 < Link

Ketamine Virginia Link

NOVA Health Recovery | Alexandria, Va 22306 | Call for esketamine and nasal ketamine as well as IV Ketamine for depression, PTSD, anxiety  703-844-0184 < Link

Ketamine Virginia Link

Ketamine-like depression treatment on track for FDA approval

 

Ketamine offers lifeline for people with severe depression, suicidal thoughtsThe drug is a close relative of ketamine, a powerful medication used in hospitals primarily as an anesthetic; recent scientific studies have also shown its potential with treatment-resistant depression and suicidal ideation. Ketamine is also used recreationally — and illegally — as a club drug known as Special K. It generates an intense high and dissociative effects.Esketamine, which is not FDA-approved for any conditions, targets a different brain pathway than approved antidepressants, many of which have been around for decades. It is expected to be used in combination with antidepressants, but the latter can take a month or two to take effect. Esketamine, on the other hand, might have an effect within hours or days, according to an FDA briefing document.The drug was designated as a breakthrough therapy in 2013, intending to “expedite the development and review of drugs for serious or life-threatening conditions,” the FDA says. First-line treatments don’t work for roughly 30% to 40% of patients with major depressive disorder, according to the briefing document.The FDA does not have to follow the recommendation of advisory committees, though it often does.

ERs 'flooded' with mentally ill patients with no place else to turn

ERs ‘flooded’ with mentally ill patients with no place else to turnHowever, the research behind esketamine has come under some criticism, with two of five key studies failing to meet their primary endpoints. Only one of these studies is a positive short-term trial, whereas most FDA-approved antidepressants are backed by at least two, according to the briefing document. But Janssen has maintained that the overall picture is positive.Adverse events tended to occur in the first two hours patients received the drug, including sedation, blood pressure increases and dissociation. For this reason, patients wouldn’t be able to pick it up at a local pharmacy; it would be given under the supervision of health care professionals who can keep an eye on the person during those first two hours.Because of the drug’s close relationship to ketamine, experts have also raised concerns about its potential for misuse and abuse. The clinical trials have not seen evidence of this risk, according to presentations made during the meeting.Advisory panelists also expressed concern that not enough long-term data was available to characterize the drug’s cognitive effects and other health impacts down the line.Get CNN Health’s weekly newsletter

There were six deaths of patients taking esketamine in trials, including three suicides, but FDA materials concluded “it is difficult to consider these deaths as drug-related.”The only current FDA-approved medication for treatment-resistant depression combines two other drugs already on the market. Other non-pharmaceutical treatments exist, such as electroconvulsive therapy.Janssen spokesman Greg Panico said no information about pricing would be available at this time. An FDA decision is expected in early March, he added.

 

CNN)A ketamine-like drug for treatment-resistant depression was backed by a US Food and Drug Administration advisory committee on Tuesday. If it is then approved by the FDA, the drug — called esketamine — may provide a new option for patients with major depressive disorder who have tried at least two other antidepressants without success.A panel of experts voted to endorse the drug, which is made in nasal spray form by the pharmaceutical company Janssen, a division of Johnson & Johnson. Fourteen members voted that the benefits outweighed the risk, with two opposed and one abstaining.

Ketamine offers lifeline for people with severe depression, suicidal thoughts
703-844-0184 | NOVA Health Recovery | Alexandria, Va 22306

Ketamine offers lifeline for people with severe depression, suicidal thoughtsThe drug is a close relative of ketamine, a powerful medication used in hospitals primarily as an anesthetic; recent scientific studies have also shown its potential with treatment-resistant depression and suicidal ideation. Ketamine is also used recreationally — and illegally — as a club drug known as Special K. It generates an intense high and dissociative effects.Esketamine, which is not FDA-approved for any conditions, targets a different brain pathway than approved antidepressants, many of which have been around for decades. It is expected to be used in combination with antidepressants, but the latter can take a month or two to take effect. Esketamine, on the other hand, might have an effect within hours or days, according to an FDA briefing document.The drug was designated as a breakthrough therapy in 2013, intending to “expedite the development and review of drugs for serious or life-threatening conditions,” the FDA says. First-line treatments don’t work for roughly 30% to 40% of patients with major depressive disorder, according to the briefing document.The FDA does not have to follow the recommendation of advisory committees, though it often does.

ERs 'flooded' with mentally ill patients with no place else to turn

ERs ‘flooded’ with mentally ill patients with no place else to turnHowever, the research behind esketamine has come under some criticism, with two of five key studies failing to meet their primary endpoints. Only one of these studies is a positive short-term trial, whereas most FDA-approved antidepressants are backed by at least two, according to the briefing document. But Janssen has maintained that the overall picture is positive.Adverse events tended to occur in the first two hours patients received the drug, including sedation, blood pressure increases and dissociation. For this reason, patients wouldn’t be able to pick it up at a local pharmacy; it would be given under the supervision of health care professionals who can keep an eye on the person during those first two hours.Because of the drug’s close relationship to ketamine, experts have also raised concerns about its potential for misuse and abuse. The clinical trials have not seen evidence of this risk, according to presentations made during the meeting.Advisory panelists also expressed concern that not enough long-term data was available to characterize the drug’s cognitive effects and other health impacts down the line.Get CNN Health’s weekly newsletter

There were six deaths of patients taking esketamine in trials, including three suicides, but FDA materials concluded “it is difficult to consider these deaths as drug-related.”The only current FDA-approved medication for treatment-resistant depression combines two other drugs already on the market. Other non-pharmaceutical treatments exist, such as electroconvulsive therapy.Janssen spokesman Greg Panico said no information about pricing would be available at this time. An FDA decision is expected in early March, he added.

Ketamine Infusion Center Virginia| 703-844-0184 | NOVA Health Recovery | Arlington, Va 22101 | Esketamine Provider | ESKETAMINE CENTER | ESKETAMINE DOCTOR | 703-844-0184 | ARLINGTON, VIRGINIA 22207 22213 | NOVA HEALTH RECOVERY | DR. SENDI | ESKETAMINE PROVIDER | NASAL SPRY KETAMINE THERAPY | KETAMINE FOR TREATMENT OF DEPRESSION, PTSD, ANXIETY | KETAMINE INFUSION CENTER | KETAMINE DEPRESSION | KETAMINE PTSD | EMAIL@NOVAHEALTHRECOVERY.COM | 2220 22182 23103 22039 20197 20184 22101 22102 22066 | CBD DOCTOR CBD CENTER | 703-844-0184 | FAIRFAX, VA 22034 | 22308 | ESKETAMINE LOUDON COUNTY, VA | ESKETAMINE ANNANDALE, VA | ESKETAMINE RICHMOND | ESKETAMINE VIRGINIA | KETAMINE SPRAY PROVIDER IN NORTHERN VIRGINIA 22308 | KETAMINE INFUSION CENTER | KETAMINE VIRGINIA | ESKETAMINE VIRGINIA | 703-844-0184 FOR AN APPOINTMENT | CBD PROVIDER | CBD CENTER | CBD VIRGINIA | DR. SENDI

NOVA Health Recovery | Alexandria, Va 22306 | Call for esketamine and nasal ketamine as well as IV Ketamine for depression, PTSD, anxiety  703-844-0184 < Link

Ketamine Virginia Link

A Randomized Controlled Trial of Intranasal Ketamine in Major
Depressive Disorder

A Randomized Controlled Trial of Intranasal Ketamine in Major Depressive Disorder

Abstract
Background—The N-methyl-d-aspartate glutamate receptor antagonist ketamine, delivered via
an intravenous route, has shown rapid antidepressant effects in patients with treatment-resistant
depression. The current study was designed to test the safety, tolerability and efficacy of intranasal
ketamine in patients with depression who had failed at least one prior antidepressant trial.
Methods—Twenty patients with major depression were randomized and 18 completed two
treatment days with intranasal ketamine hydrochloride (50 mg) or saline solution in a randomized,
double-blind, crossover study. The primary efficacy outcome measure was change in depression
severity 24 hours following ketamine or placebo, measured using the Montgomery-Asberg
Depression Rating Scale. Secondary outcomes included persistence of benefit, changes in selfreports of depression, changes in anxiety, and proportion of responders. Potential
psychotomimetic, dissociative, hemodynamic, and general adverse effects associated with
ketamine were also measured.

Results—Patients showed significant improvement in depressive symptoms at 24 hours
following ketamine compared to placebo [t=4.39, p<0.001; estimated mean MADRS score
difference of 7.6 ± 3.7 (95% CI: 3.9 – 11.3)]. Eight of 18 patients (44%) met response criteria 24
hours following ketamine administration, compared to 1 of 18 (6%) following placebo (p=0.033).
Intranasal ketamine was well tolerated with minimal psychotomimetic or dissociative effects and
was not associated with clinically significant changes in hemodynamic parameters.

Conclusions—This study provides the first controlled evidence for the rapid antidepressant
effects of intranasal ketamine. Treatment was associated with minimal adverse effects. If
replicated, these findings may lead to novel approaches to the pharmacologic treatment of patients
with major depression

Intranasal ketamine has shown safety and efficacy as an anesthetic and analgesic agent (16–
20). In particular, intranasal ketamine has been successfully used in the treatment of
headache and pain in ambulatory patients (21–23). In one study, 50 mg of ketamine
administered intranasally was well tolerated and led to symptomatic improvement in chronic
pain (23). The objective of the current proof of concept clinical trial was to test the rapid
antidepressant effect of a single 50 mg administration of ketamine via an intranasal route in
patients with major depression who had failed to respond to at least one prior antidepressant
trial. Based on accumulating evidence supporting the efficacy and tolerability of ketamine
administered IV in depression, and prior research examining intranasal ketamine in pain, we
hypothesized that a dose of 50 mg, administered via an intranasal route, would be safe, well
tolerated and lead to a rapid reduction in depressive symptoms.

DISCUSSION
In the current study we found that a single dose of 50 mg of ketamine administered via
intranasal route was associated with a rapid antidepressant response in patients with major
depression who had failed at least one prior antidepressant trial. A significant antidepressant
effect of ketamine was detected as early as 40 min following administration and there was a
large difference in depression severity between the treatment conditions at the 24-hour
primary outcome (mean difference in MADRS score of 7.6 ± 3.7). In aggregate, there was
significant antidepressant benefit following ketamine compared to placebo over the full 7-
day assessment period, although when comparing individual time points the treatment
conditions no longer separated at 72 hours or 7 days. Ketamine was associated with
significant improvement in anxiety symptoms and self-reports of depressive symptoms at 24
hours. Intranasal ketamine was well tolerated with only very minimal increases in
dissociation, psychosis-like symptoms or hemodynamic parameters. This study provides the
first randomized, controlled evidence that intranasal ketamine is safe, well tolerated, and
effective for rapid reduction of depressive symptoms in patients with MDD and at least mild
treatment resistance.
In comparison with prior studies of ketamine administered IV (at a dose of 0.5 mg/kg) in
depression, our observed magnitude of antidepressant effect with intranasal administration
may be somewhat reduced. Murrough et al. reported a mean ketamine-placebo difference of
7.95 points (95% CI: 3.20–12.71) on the MADRS 24 hours following a single IV infusion
and a response rate of 64% (15). Response rates as high as 70% following IV administration
have been reported in some studies (11, 15), though other studies have reported response
rates from 50% to as low as 30% following IV ketamine (28, 29). Our mean drug-placebo
difference is in line with what has been previously reported (7.6 ± 3.7 points on the
MADRS), although the proportion of responders in our study may be somewhat lower at
44%. This lower proportion of treatment responders may be consistent with the lower blood
ketamine levels achieved in our study compared to levels previously reported following IV
administration. In our sample, the mean ketamine blood level was 72 ng/mL at 20 min and
84 ng/mL at 40 min. In contrast, mean ketamine levels reported following IV infusion
(0.5mg/kg) are approximately 150 ng/mL at 30 min and 200 ng/mL at 40 min. (27, 30, 31).
It is currently not known if efficacy equivalent to IV administration can be obtained by
intranasal administration in the case that comparable blood levels can be achieved.

We report a significant improvement in anxiety symptoms at 24 hours, assessed with the
HAM-A. Two studies of IV ketamine for bipolar depression reported a significant
improvement in anxiety symptoms measured with the HAM-A and a visual analog scale(27,
32). However, previous studies of patients with unipolar TRD have not described effects of
IV ketamine on anxiety, with the exception of an early RCT (11) and an open label study
(33) reporting significant improvement in psychic anxiety measured as an individual
symptom on the Hamilton Depression Rating Scale, and another open-label study reporting
significant decrease in anxiety symptoms on the HAM-A at +230 minutes (34).
Previous studies of IV ketamine in depression have reported elevations in measures of
psychotomimetic, dissociative and hemodynamic parameters (11, 13, 35). In our study, the
ketamine group experienced a very limited increase in dissociation at +40 min as measured
by the CADSS (mean 1.4 points; scale range 0–92). In comparison, Murrough et al. reported
a larger dissociative effect 40 min following ketamine administered IV [mean CADSS score
of 14.7 points (95% CI: 10.6–18.8)] (15). A similar pattern was observed for psychotic-like
effects measured using the BPRS+ (11, 15). We also observed comparatively small changes
in hemodynamic parameters. No patient met protocol criteria for interventions. Studies of IV
ketamine in depression have reported relatively greater changes in hemodynamic parameters
(mean systolic BP increase of 19.0 versus our 7.6 mmHg at +40mins relative to baseline)
(15). The reduced magnitude of acute behavioral and hemodynamic changes observed in the
current study may be consistent with the lower blood levels achieved compared to prior
studies with ketamine administered IV, as discussed above.
The bioavailability of ketamine administered via an intranasal route has been reported to be
between 25–50% (36). A study in healthy volunteers comparing administration methods
found intranasal ketamine bioavailability of 45%, higher than subligual, oral, or rectal
administration and found no significant differences in pharmacokinetics between
preparations, including injection (37). Additionally, this study found conversion to
norketamine was more similar between intranasal and injection than the other administration
methods, suggesting that first-pass metabolism is relatively absent with intranasal
administration. The area under the ketamine and norketamine plasma concentration-time
curves in that study was lowest for intranasal administration but was found to increase
almost linearly with doses from 25 to 50mg (37). In previous studies of IV ketamine in
depression, peak norketamine blood levels of approximately 20–50 ng/mL have been
reported (30, 31). In line with these findings, the mean norketamine level in our study was
46 ng/mL at 40 min.
We selected our dose of 50 mg largely based on a previous study using a similar design and
the same dose in patients with a chronic pain disorder (23). Based on an expected
bioavailability of intranasal ketamine between 25–50% (36), our dose may be approximately
equivalent to 0.15 – 0.34 mg/kg administered IV. Although this is lower than the standard
0.5 mg/kg IV frequently used in ketamine depression studies, we reasoned that this dose was
appropriate from a safety perspective given that the administration period in the current
study is relatively short (20 min versus 40 min or longer in IV studies). Clearly, much more
research is required in order to determine the optimal dose, duration, frequency and route of
administration of ketamine for depression

ESKETAMINE CENTER | ESKETAMINE DOCTOR | 703-844-0184 | ARLINGTON, VIRGINIA 22207 22213 | NOVA HEALTH RECOVERY | DR. SENDI | ESKETAMINE PROVIDER | NASAL SPRY KETAMINE THERAPY | KETAMINE FOR TREATMENT OF DEPRESSION, PTSD, ANXIETY | KETAMINE INFUSION CENTER | KETAMINE DEPRESSION | KETAMINE PTSD | EMAIL@NOVAHEALTHRECOVERY.COM | 2220 22182 23103 22039 20197 20184 22101 22102 22066 | CBD DOCTOR CBD CENTER | 703-844-0184 | FAIRFAX, VA 22034 | 22308 | ESKETAMINE LOUDON COUNTY, VA | ESKETAMINE ANNANDALE, VA | ESKETAMINE RICHMOND | Esketamine Virginia | Ketamine spray Provider in Northern Virginia 22308 | Ketamine infusion Center | Ketamine Virginia | Esketamine Virginia | 703-844-0184 for an appointment | CBD provider | CBD Center | CBD Virginia | Dr. Sendi

NOVA Health Recovery | Alexandria, Va 22306 | Call for esketamine and nasal ketamine as well as IV Ketamine for depression, PTSD, anxiety  703-844-0184

Combined Treatment With Naltrexone, Ketamine Effective for Depressive Symptoms

Ketamine
Participants who received the naltrexone and ketamine regimen reported an improvement in depressive symptoms.

The effectiveness of ketamine as an antidepressant has been mitigated by concerns of possible abuse and suggestions that the antidepressant effects might be dependent on opiate receptor stimulation. However, results from a case series published in JAMA Psychiatry support the efficacy of combined naltrexone and ketamine treatment for depressive symptoms.

Investigators conducted an 8-week open-label pilot study of 5 patients with current major depressive disorder and alcohol use disorder. Patients received a single dose of injectable naltrexone (380 mg) 2 to 6 days prior to the first ketamine treatment, followed by 4 weeks of ketamine infusions (0.5 mg/kg once a week). Patients were assessed at baseline and at 4 hours after each infusion with the Montgomery Åsberg Depression Rating Scale. The primary outcome measure was a 50% or higher improvement from baseline Montgomery Åsberg Depression Rating Scale score. All patients were abstinent from alcohol for 5 days or longer prior to the initial ketamine infusion.

Combined treatment with naltrexone and ketamine was associated with a significant reduction in depressive symptoms. Three of 5 patients (60%) met response criteria following initial ketamine dose, and 5 of 5 patients (100%) met response criteria by the fourth dose, although 1 patient left the trial following 2 ketamine infusions. Symptoms improved by 57% to 92%, depending on the patient. In addition, 4 of 5 patients (80%) reported a reduction in alcohol craving and consumption per the Obsessive Compulsive Drinking Scale. Combined treatment was safe and well tolerated. No serious adverse events were reported in the trial.

These results challenge existing data that pretreatment with naltrexone may interfere with the antidepressant properties of ketamine. Research with a larger cohort is necessary to further investigate the efficacy of combination treatment with naltrexone and ketamine for depression.

Reference

Yoon G, Petrakis IL, Krystal JH. Association of combined naltrexone and ketamine with depressive symptoms in a case series of patients with depression and alcohol use disorder [published online January 9, 2019]. JAMA Psychiatry. doi: 10.1001/jamapsychiatry.2018.3990

Association of Combined Naltrexone and Ketamine with depressive symptoms in a case series of patients with depression and AUD

ESKETAMINE | 703-844-0184 | KETAMINE INFUSION CENTER | NOVA HEALTH RECOVERY | ALEXANDRIA, VA 22308 | ESKETAMINE VIRGINIA | ESKETAMINE PROVIDER | ESKETAMINE DOCTOR | ESKETAMINE FAIRFAX, VA | EMAIL@NOVAHEALTHRECOVERY.COM | NASAL SPRAY KETAMINE | KETAMINE TREATMENT PROVIDER, KETAMINE FOR DEPRESSION, PTSD, ANXIETY, PAIN | 22067 22066 | 22039 |22101 |22182 | 20124 | 20171 | 22207 | 22102 |ESKETAMINE NORTHERN VIRGINIA | ESKETAMINE TREATMENT PROVIDER | CBD PROVIDER | CBD CENTER | CBD DOCTOR |LOUDON COUNTY, VA ESKETAMINE CENTER | 703-844-0184 | ESKETAMINE MARYLAND | NOSE SPRAY KETAMINE

NOVA Health Recovery Ketamine Infusion Center | 703-844-0184 – call for a Ketamine infusion or Ketamine nasal spray to treat your depression Alexandria, Va 22306 EMAIL is email@novahealthrecovery.com

NEW VARIATION OF KETAMINE TO BE APPROVED BY FDA FOR TREATMENT OF DEPRESSION

“The biggest breakthrough in depression treatment since Prozac”

  • 6 FEBRUARY 2019
New variation of ketamine to be approved by FDA for treatment of depression

Back in July of 2017, the world’s first ketamine trial for depression proved to be “incredibly effective” in curing elderly patients. The drug, often referred to as Special K, is a popular substance found clubland culture, but recent breakthrough studies and the development of chemical variations of ketamine has shown that the drug is a powerful tool that can help save lives and allow people to live life to the fullest potential.

According to Bloomberg, the Food and Drug Administration (FDA) has cleared the way for the first drug based on ketamine, from Johnson & Johnson, to gain approval as soon as March 2019. The ketamine variant, called esketamine, may very well become the first-ever rapid-acting antidepressant for suicidal patients and “treatment-resistant depression”. While physicians are still unsure about the long term effects of the drug and more trials need to be conducted in order to get to the root of its effectiveness, many doctors think esketamine may be “the biggest breakthrough in depression treatment since Prozac”.

The long-form story published in Bloomberg tells the stories of multiple people who have benefited from ketamine treatment and how the rapid development of this new miracle drug is being used to combat the skyrocketing rate of suicide in the United States (up 33 per cent in the last 20 years).

The drug esketamine provides “a quick molecular reset button for brains impaired by stress or depression”. Initially developed as an intravenous drug, Johnson & Johnson has developed a nasal solution that has the same effect. The initial study of the drug involved 68 people at high risk that were all antidepressants and other treatment – no placebos were used on actively suicidal patients. Of those who were given esketamine, 40 per cent were deemed “no longer at risk of killing themselves within 24 hours”.

As physicians and investors race to find out more about this supposed miracle drug, concerns remain that a new abuse crisis – similar to that of the current opioid crisis – may arise following federal approval of the substance.

Check out the captivating story behind these successful studies here

Learn more about ketamine’s colorful clubland history here.

Find out how we survived an unconventional, silly, hilarious and definitely brilliant musical about ketamine here.