Testosterone and Aggression: More Than Just Biology?

Emil F. Coccaro

Carré et al. (1) have carried out a careful and thoughtful study in an area of human aggression that has long held the public in its thrall.

If you were a Jeopardy! contestant and the answer was: “Something we all have that makes us aggressive,” you would say, “Testosterone!” and you would win. Yes, but this would not be entirely true. It might be true if you were talking about lower-order mammals, but not necessarily humans. You might counter that we all know about “roid rage.” Yes, but this requires supraphysiological doses of testosterone (T)-like agents for more than a single dose. In addition, it has been clear for years that the relationship between aggression and baseline levels of T is, even if statistically significant, rather small in magnitude.

My research group looked at basal levels of cerebrospinal fluid T in a mixed group of personality-disordered individuals several years back and noted no relationship with aggression or impulsivity but a positive relationship with “venturesomeness” on the Eysenck Personality Questionnaire (2). This construct is a part of the larger construct of “sensation seeking” and represents “thoughtful” as opposed to “impulsive” sensation seeking. The critical difference between the two is that when venturesome people climb a mountain, they make certain they are prepared to engage in this potentially dangerous activity; they do not simply go off “half-cocked” and climb without making all the proper preparations. While not exactly the same as dominance, people high in venturesomeness likely share similar characteristics, such as assertiveness and self-assuredness.

The Carré et al. study goes much further than previous studies in that it performs a T challenge in a large group of healthy subjects and employs a laboratory assessment of aggressive responding rather than assessing aggression simply as a personality trait. Carré et al. also prospectively assess the relationship of dominance and self-control to the behavorial response to a single dose of T.

The results are exciting because they make clear the complex nature of the T/aggression relationship. T does not simply increase aggressive behavior in everyone but does so according to specific behavioral parameters. That is, acute T increases aggressive responding only in those high on dominance and/or low on self-control. This provides additional evidence of the importance of trait behavioral/personality dimensions to the effect of biologically active compounds. Aspects of personality are no longer a curiosity or a nuisance in research but instead are critical to our understanding of human behavior.

Also noteworthy is the corroborating data regarding the underlying mechanisms of this finding—specifically the role of social cognition at the neurocircuitry level. That is, previous data indicated that exogenous T increases amygdala reactivity (3), reduced orbitofrontal activity (4), and reduced amygdala and orbitofrontal connectivity (5) in response to angry faces—which is what is observed in those with recurrent, problematic, impulsive aggressive behavior and intermittent explosive disorder (6,7). All of which make a compelling, and rich, story for our understanding of how T exerts it effect on brain and behavior.

Next time you appear on Jeopardy! and you are given the answer posed above, say, “Possibly testosterone…but it depends on the nature of your personality.” You might not win the round, but you would be correct.

Acknowledgments and Disclosures

EFC is on the scientific advisory board of Azevan Pharmaceuticals, Inc., and is a consultant for Avanir Pharmaceuticals, Inc.

Article Information

From the Department of Psychiatry and Behavioral Neuroscience, Biological Sciences Division, University of Chicago, Chicago, Illinois.

Address correspondence to Emil F. Coccaro, M.D., The University of Chicago, Psychiatry and Behavioral Neuroscience, Biological Sciences Division, 5841 South Maryland Avenue, MC 3077, Chicago, IL 60637; E-mail: ecoccaro@bsd.uchicago.edu.

Received Jun 23, 2017; accepted Jun 24, 2017.

References


SEE CORRESPONDING ARTICLE ON PAGE 249