New Treatment Options for Depression: A Primer for Internists

Tina H. Byun MD, Swarna S. Chaliki MD, MBBS, Kenneth G. Poole Jr MD, MBA

PII: S0002-9343(19)30115-9
DOI: https://doi.org/10.1016/j.amjmed.2019.01.012
Reference: AJM 14991

To appear in: The American Journal of Medicine

Please cite this article as: Tina H. Byun MD, Swarna S. Chaliki MD, MBBS, Kenneth G. Poole Jr MD, MBA, New Treatment Options for Depression: A Primer for Internists, The American Journal of Medicine (2019), doi: https://doi.org/10.1016/j.amjmed.2019.01.012

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.
Clinical Significance

- Multiple new antidepressant and adjunctive medication options have been approved over the past decade for treatment of major depressive disorder.
- The therapies outlined should be considered for patients with treatment-resistant depression and adverse effects to first-line medications.
Abstract
Depression continues to be a challenging condition to treat despite the myriad treatment options available. Primary care providers are increasingly tasked with providing second- and third-line treatments for major depressive disorder and, thus, should be familiar with newer medication therapies that are available. In this article, we aim to provide the general internist and other providers who treat depression in their practice with a succinct review of recent developments in the treatment of depression.

Abbreviations
5-HT, serotonin
FDA, US Food and Drug Administration
MADRS, Montgomery-Asberg Depression Rating Scale
MTHFR, 5,10-methylenetetrahydrofolate reductase
NE, norepinephrine
SNRI, serotonin-norepinephrine reuptake inhibitor
SSRI, selective serotonin reuptake inhibitor

Background
Major depressive disorder is a common condition, affecting 6.7% of adults in the United States in 2015; 16.2% of Americans will experience a depressive episode during their lifetime, and in 2010, depression resulted in 8 million ambulatory visits in the United States. Antidepressants are the second most commonly prescribed drug class, with a peak prevalence of 26% in women aged 50 to 64 years. Although a plethora of treatment options are available, most patients (56%-72.5%) will not respond to initial treatment with antidepressant monotherapy. Thus, additional treatment options are needed for patients with inadequate response to first-line medications. In this article, we aim to familiarize
physicians with newer and adjunctive pharmacologic major depressive disorder treatments.

Antidepressants Approved in the Past 10 Years

Desvenlafaxine

Desvenlafaxine, the third serotonin-norepinephrine reuptake inhibitor (SNRI), was approved by the US Food and Drug Administration (FDA) in 2008 for major depressive disorder. Although it has been reported as safe and well-tolerated in children,\(^7\)\(^,\)\(^8\) it is not currently approved for use in pediatric patients. Desvenlafaxine is a salt of the major active metabolite of venlafaxine. It binds serotonin (5-HT) and norepinephrine (NE) receptors, with inhibition of 5-HT uptake being approximately 10 times more potent than NE uptake.\(^9\)

Desvenlafaxine was studied in 3 randomized controlled trials at doses of 100 to 400 mg/d. The first 2 trials showed improvements in depression rating scales compared with placebo,\(^10\)\(^,\)\(^11\) but the third study did not show a significant benefit of desvenlafaxine over placebo at 8 weeks.\(^12\) Because data from the initial studies showed increasing adverse effects with higher doses of desvenlafaxine, another study evaluated lower dosages and showed improvements in the primary end point, Hamilton Rating Scale for Depression score, with desvenlafaxine over placebo at the 50-mg but not the 100-mg dose.\(^13\)

Despite the availability of 25-mg, 50-mg, and 100-mg desvenlafaxine tablets, 50 mg/d is the recommended starting and maintenance dosage, on the basis of the above trial data. Desvenlafaxine is generally safe and well tolerated at this dosage. Trial data indicate that doses higher than 50 mg offer no additional benefit\(^14\) and are associated with increased adverse effects and discontinuation rates.\(^9\)\(^,\)\(^15\) Because metabolism of desvenlafaxine is through hepatic conjugation and urinary excretion, dosing should be adjusted for those with hepatic and renal impairment (Table). For discontinuation, tapering over 2 to 4 weeks is suggested;
the 25-mg tablet should be used for this purpose.14 Desvenlafaxine is only available as extended-release tablets, which should not be split.

Desvenlafaxine has minimal inhibitory and induction effects on cytochrome P450 and CYP2D6.17 Thus, the risk of drug-drug interactions is lower for desvenlafaxine than for other SNRIs. The most common adverse effects include nausea, insomnia, dizziness, dry mouth, and decreased appetite, with nausea being the most common reason for discontinuation. Because blood pressure can be increased with use of desvenlafaxine, it should be monitored periodically during treatment. Desvenlafaxine has limited effects on sexual function and weight, which may also be benefits to consider.15

Desvenlafaxine has also been used off-label for the treatment of menopausal hot flashes, with placebo-controlled trial data showing evidence of benefit at a dosage of 100 mg daily.18 Unlike the case with other SNRIs, study outcomes do not support the use of desvenlafaxine for treatment of neuropathic pain.19, 20 In summary, prescribers should consider the use of desvenlafaxine for patients who have concomitant postmenopausal vasomotor symptoms or those who are taking other medications metabolized through the cytochrome P450 and CYP2D6 pathways.

\textbf{Levomilnacipran}

Levomilnacipran is a novel SNRI that was FDA approved for the treatment of major depressive disorder in adults in 2013. It is not currently approved for use in children. It is the enantiomer of milnacipran, which is currently FDA approved for the treatment of fibromyalgia. Unlike the other SNRIs, levomilnacipran more potently inhibits NE reuptake relative to 5-HT reuptake by about 2-fold.21

Approval for levomilnacipran was based on a series of randomized, double-blind, placebo-controlled trials. Initial, short-term trials evaluated the drug...
for 8 weeks at doses of 40 to 120 mg. In 3 trials,22-24 levomilnacipran in all doses was significantly more effective than placebo in decreasing the Montgomery-Asberg Depression Rating Scale (MADRS) total score from baseline to the end of the trial. Two longer-term trials evaluated the drug for 24 and for 48 weeks. The first showed a decrease in MADRS score from week 0 to week 48,25 and the second showed a nonsignificantly longer time to depression relapse in the levomilnacipran group.26

Levomilnacipran is started at 20 mg once daily for 2 days and then increased on day 3 to 40 mg/d. It may then be increased by 40-mg increments every 2 days to a maximum dose of 120 mg/d. Because levomilnacipran is primarily renally excreted, patients with moderate-to-severe renal impairment should be prescribed adjusted doses (≤80 mg/d). Gradual taper over at least several weeks is recommended for discontinuation. Levomilnacipran is available only as an extended-release capsule that cannot be split. A dose-titration pack is available for the initial 28 days of therapy (contains 2 20-mg and 26 40-mg capsules).

The most common adverse effects of levomilnacipran are headache, gastrointestinal tract symptoms (nausea, vomiting, constipation), hyperhidrosis, tachycardia, urinary hesitancy, and erectile dysfunction and ejaculatory disorders in men.22-27 The incidence of these adverse effects is not dose related, with the exception of erectile dysfunction and urinary hesitancy due to increased peripheral NE tone. Short-term studies also showed small mean increases (3-4 mm Hg) in both systolic and diastolic blood pressure and mild increases in serum transaminase values in those taking levomilnacipran compared with placebo.22-24,27 Unlike many commonly used antidepressants, levomilnacipran has not been associated with weight gain or significant prolongation of QTc interval.22-24,27

Because of levomilnacipran’s chemical similarity to milnacipran, it would be a good choice for patients with concomitant fibromyalgia. Prescribers
should also consider levomilnacipran for patients with substantial negative symptoms of depression because the increased noradrenergic activity of levomilnacipran may improve these symptoms more effectively.

Vilazodone

Vilazodone is a novel antidepressant that was FDA approved in 2011 for the treatment of major depressive disorder. It has selective serotonin reuptake inhibitor (SSRI) effects plus postsynaptic 5-HT$_{1A}$ receptor partial effects, so it is regarded as a serotonin partial agonist-reuptake inhibitor.$^{28-30}$ Because of the 5-HT$_{1A}$ effects, vilazodone is hypothesized to have a more rapid onset of effect than other antidepressants,31 although no head-to-head clinical trials have confirmed this.

Vilazodone was FDA approved for treatment of major depressive disorder on the basis of 8-week, randomized, double-blind, placebo-controlled trials. Vilazodone at a dosage of 40 mg/d showed superior efficacy over placebo in mean changes on several depression rating scales—MADRS, Hamilton Rating Scale for Depression, and Clinical Global Impressions scale.32,33 In addition, significant differences on the MADRS were observed in week 1,30,32 which supports the theory of a more rapid onset of therapeutic benefit for vilazodone. Furthermore, subsequent pooled-data studies showed significantly greater improvement in depressive symptoms that were apparent from week 134 and superior efficacy of vilazodone over placebo in cumulative response rates, also evident from week 1 ($P<.001$).35

Vilazodone should be started at 10 mg/d and doubled every 7 days to a target of 40 mg/d. More gradual dose titration should be considered for patients with severe gastrointestinal adverse effects. Dosage adjustment to 20 mg/d is recommended if vilazodone is used in combination with a strong CYP3A4 inhibitor, but no adjustment is required for those with mild-to-moderate renal or
hepatic impairment. Vilazodone has not been studied for use in the setting of severe renal or hepatic dysfunction.31,36

The most common adverse effects of vilazodone are diarrhea (28%), nausea (23.4%), insomnia (6%), headache (13.4%), dizziness (8.5%), and dry mouth (8.0%).31,37 One published randomized controlled trial showed comparable safety and tolerability between vilazodone and citalopram.38 Insomnia is an important adverse effect to consider when selecting vilazodone. A study of 10 healthy men receiving 1 20-mg dose of vilazodone showed decreases in total sleep time, loss of rapid eye movement sleep, and more wakefulness in later portions of the night with vilazodone compared with placebo.31,39 Patients treated for 8 weeks with vilazodone did not have significant weight gain32,33 and the mean weight increase in patients treated with vilazodone for 52 weeks was 1.7 kg.40 Vilazodone is speculated to have a lower risk of treatment-related sexual adverse effects and to improve depression-related sexual dysfunction on the basis of its postsynaptic 5-HT1A receptor actions. Pooled data from placebo-controlled trials of vilazodone showed that 91% of patients had stable or improved sexual function at the end of treatment.41 Only 8% of vilazodone-treated patients noted treatment-related sexual dysfunction (vs 0.9% with placebo),41 which is much lower than rates seen with other common antidepressants.42

An 8-week randomized, double-blind, placebo-controlled trial of vilazodone for treatment of generalized anxiety disorder showed a significantly greater change in Hamilton Anxiety Rating Scale score in the vilazodone group ($P<.001$).43 Use of vilazodone for anxiety is currently off label, but vilazodone may be a good choice for patients with concurrent depression and anxiety. Prescribers should also consider vilazodone in patients with sexual dysfunction.

Vortioxetine
Vortioxetine is an SSRI that was FDA approved in 2013 for the treatment of major depressive disorder in adults. It is not currently approved for use in children. Originally branded as Brintellix, the brand name was changed to Trintellix (Takeda Pharmaceuticals) in 2016 because of confusion with the drug Brilinta (ticagrelor; AstraZeneca). Although vortioxetine is considered an SSRI, its precise mechanism of action is ambiguous because of multiple effects, including antagonism at 5-HT3, 5-HT1D, and 5-HT7 receptors and agonism at 5-HT1A and 5-HT1B receptors.44

Vortioxetine was studied in 11 short, randomized, placebo-controlled trials and 5 longer-duration open-label trials. Vortioxetine at fixed dosages of 15 mg/d and 20 mg/d was associated with statistically significant improvement (P<.001) in MADRS score and major depressive disorder remission rates.45

Vortioxetine is available as 5-mg, 10-mg, and 20-mg tablets; 10 mg/d is the recommended starting dosage. Dosage adjustment is not required for persons with renal and mild-to-moderate hepatic impairment, and there are no data to advise its use with severe hepatic impairment. A maximum of 10-mg dosing is recommended for poor metabolizers of CYP2D6. If dosing is more than 15 mg/d, a reduction to 10 mg/d for 1 week is advised before discontinuation.

Vortioxetine is generally safe and better tolerated than other antidepressants.46-47 Common adverse effects of vortioxetine include dizziness, headache, and gastrointestinal upset.47-49 Sexual dysfunction was increased mildly (1%-5%) in some studies48 but not significantly increased in others.47 Vortioxetine was not associated with significant increases in blood pressure, heart rate, QT interval, or weight.47,48

Unlike other SSRIs, vortioxetine has unclear benefits in the treatment of generalized anxiety disorder. Some studies show small benefit and others show no benefit; meta-analyses of the available studies also show mixed results.50,51 Thus,
we recommend against the use of vortioxetine for major depressive disorder with concomitant anxiety because other available drugs have clear benefit in the treatment of both. The clinical role for vortioxetine would be for patients who do not tolerate antidepressant therapy because of adverse effects.

Augmentation Strategies

Second-Generation Antipsychotics

The second-generation antipsychotics are thought to be beneficial for treatment of depression through variable effects on several neurotransmitters, including the 5-HT₂, 5-HT₁A, and dopamine D₂ and D₃ receptors and the NE reuptake transporter. The second-generation antipsychotic medications currently FDA approved for adjunctive treatment of depression are aripiprazole, olanzapine, quetiapine, and brexpiprazole. Augmentation with ziprasidone and risperidone has been described, although their use remains off label.

Aripiprazole is a second-generation antipsychotic that was the first of its class to be FDA approved, in 2008, for adjunctive therapy for major depressive disorder. Two industry-conducted, randomized, placebo-controlled studies of aripiprazole have demonstrated the efficacy of adjunctive aripiprazole added to standard antidepressant therapy (SSRIs or SNRIs) in improving depression symptom scores and remission rates in nonresponders to first-line antidepressant therapy alone. The rates of remission in the treatment group vs the placebo group were 26.0% vs 15.7% \((P=.01)\) in one study and 25.4% vs 15.2% \((P<.05)\) in the other. The dosage used in these studies was 5 mg/d, titrating upward by 5 mg per week, as needed, to a maximum dosage of 15 mg/d. The dosage was decreased to 2 mg/d if the patient had adverse effects at the 5-mg/d dosage.

Brexpiprazole was FDA approved in 2015 on the basis of industry-conducted, 6-week, randomized, placebo-controlled studies of patients who had inadequate response to standard antidepressant therapy. The 1-mg daily dosage did
not show significant benefit, but the 3-mg daily dosage showed improvement in the primary end point (MADRS score) compared with placebo. A fixed 2-mg dose and showed improvements in MADRS score and Sheehan Disability Scale. Brexpiprazole should be started at 0.5 to 1 mg/d and increased by 1 mg each week to a maximum of 3 mg/d.

The notable potential adverse effects of second-generation antipsychotics include extrapyramidal symptoms, hyperprolactinemia, anticholinergic effects, and weight gain/metabolic syndrome. More rare but serious adverse effects include tardive dyskinesia, neuroleptic malignant syndrome, seizures, and agranulocytosis. Dosages of the second-generation antipsychotics used for major depressive disorder treatment augmentation are typically lower than those used for other indications, so fewer adverse effects will most likely occur. Aripiprazole and brexpiprazole are associated with lower risks of metabolic disorders and anticholinergic adverse effects than many of the other second-generation antipsychotics and, thus, may be preferred over most of the other second-generation antipsychotics in this setting. Additionally, brexpiprazole is associated with fewer extrapyramidal symptoms and akathisia, which may make it the preferable agent for augmentation, although aripiprazole may be cheaper (Table).

Augmentation with second-generation antipsychotics is favorable over combination antidepressant therapy or further antidepressant switching for patients with severe treatment-resistant depression, depression with psychotic features, substance-use disorders, and personality disorders.

Folic Acid Derivatives

Folic acid was hypothesized to be beneficial in the treatment of depression after studies demonstrated a relationship between folate deficiency, depression, and treatment resistance to first-line antidepressants. Studies,
including small randomized placebo-controlled trials, of folic acid and methyltetrahydrofolate as adjunctive therapy to standard treatment with antidepressants have shown improvement in depression response rates with the addition of a folate derivative.63-65 Dosages of folate used in these studies ranged from 200 to 500 mcg/d with 15 to 50 mg/d of methyltetrahydrofolate.65

Folic acid (supplemental form of folate) and dihydrofolate (food-derived form of folate) are both converted to L-methylfolate (the centrally active form of folate that crosses the blood-brain barrier) by 5,10-methylenetetrahydrofolate reductase (MTHFR). About 8% to 20% of white North Americans are homozygous and 40% to 50% are heterozygous for mutations in the MTHFR gene, which confer decreased enzymatic activity.62 Persons with decreased MTHFR activity would be expected to have decreased response to folic acid—hence, the rationale for treatment with L-methylfolate, which bypasses the need for conversion by MTHFR.

One randomized, double-blind, placebo-controlled trial demonstrated that L-methylfolate, used as adjunctive therapy to SSRIs in patients not initially responding to SSRI therapy, increased response to treatment, from 14.6% in the placebo group to 32.3% in the treatment arm after 30 days of therapy.66 This benefit was seen only at the 15-mg/d dosage. No substantial adverse effects were reported in the treatment group compared with placebo.

L-methylfolate is classified as a medical food (as opposed to folic acid, which is a supplement). Medical foods do not require FDA approval before marketing and are regulated like supplements, but the packaging appears similar to prescription products. Unlike supplements, medical foods can be labeled for treatment of specific medical conditions.67 Since L-methylfolate is more expensive than folic acid ($94 vs $7 for a 30-day supply),16 targeted MTHFR genotyping may be useful in patients for whom this therapy is being considered.
Conclusion

This review has discussed recently approved medications for treatment of major depressive disorder. Given the frequency of depression in the general population, general internists and other primary care providers should keep themselves abreast of treatment options for this common and often chronic disease. Although several newer antidepressants and augmentation strategies are available, we recommend that providers consider these to be third- or fourth-line treatments after trials of antidepressants that are generically available, primarily because of cost. With the exception of desvenlafaxine and aripiprazole, the lack of generic availability may make these drugs cost-prohibitive for many patients, at hundreds of dollars per month if not covered by insurance. Prescribers may also want to consider the use of these agents for patients who have had adverse effects associated with first-line therapies.

Although this review has focused on pharmacologic therapy, physicians should also consider nonmedication treatment options for patients who do not respond to first-line medications. Psychotherapy (in-person and internet-based) has been well-described as both an alternative and adjunct to antidepressant medication. Exercise, an inexpensive and well-tolerated intervention with additional health benefits, also has been systematically reviewed and provides moderate benefit.
References

Available from: https://www.healthcarebluebook.com/explore-contact-us;

17. Reddy S, Kane C, Pitrosky B, Musgnung J, Ninan PT, Guico-Pabia CJ.
Clinical utility of desvenlafaxine 50 mg/d for treating MDD: a review of two
randomized placebo-controlled trials for the practicing physician. Curr Med
Res Opin. 2010;26:139-150.

18. Pinkerton JV, Constantine G, Hwang E, Cheng RF, Study I. Desvenlafaxine
compared with placebo for treatment of menopausal vasomotor symptoms: a
12-week, multicenter, parallel-group, randomized, double-blind, placebo-

19. Alcantara-Montero A. [Desvenlafaxine and neuropathic pain: additional
clinical benefits of a second generation serotonin-noradrenaline reuptake

20. Allen R, Sharma U, Barlas S. Clinical Experience With Desvenlafaxine in
Treatment of Patients With Fibromyalgia Syndrome. Clin Pharmacol Drug

Milnacipran: a comparative analysis of human monoamine uptake and

22. Asnis GM, Bose A, Gommoll CP, Chen C, Greenberg WM. Efficacy and
safety of levomilnacipran sustained release 40 mg, 80 mg, or 120 mg in
major depressive disorder: a phase 3, randomized, double-blind, placebo-

23. Bakish D, Bose A, Gommoll C, et al. Levomilnacipran ER 40 mg and 80 mg
in patients with major depressive disorder: a phase III, randomized, double-

<table>
<thead>
<tr>
<th>Drug</th>
<th>Mechanism of Action</th>
<th>Dosing</th>
<th>Notable Adverse Effects</th>
<th>Other Considerations</th>
<th>Cost for 30-day Supply (Dose)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Desvenlafaxine</td>
<td>SNRI</td>
<td>Start at 50 mg/d</td>
<td>Nausea, insomnia, dizziness, dry mouth and decreased appetite</td>
<td>Must monitor periodically for dosages</td>
<td>$150 (50 mg)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Can increase, although additional benefit of dosages >50 mg is limited</td>
<td>hot flashes mg</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

For moderate-severe hepatic impairment, maximum dosage is

1. For personal use only. No other uses without permission. Copyright ©2019. Elsevier Inc. All rights reserved.
100 mg/d

For CKD stage 4 or greater:
maximum dosage is 50 mg/d

Levomilnacipra SNRI

Start at 20 mg/d for 2 days, then increase to 40 mg/d
titrate every 2+ days based on response to maximum dosage of 120 mg/d

Headache, nausea/vomiting, hyperhidrosis, tachycardia, constipation, urinary hesitancy, erectile dysfunction, ejaculatory disorders

May cause small increase in blood pressure (3-4 mm Hg) and transaminases

Consider with concomitant fibromyalgia

Good for patients with negative symptoms of depression

Weight neutral

No QT prolongation

$340 (40 mg)

Vilazodone SPARI

Start at 10 mg/d and increase in GI symptoms, insomnia, additional benefit for

$220 (40 mg)
double headache, anxiety mg)
every 7 dizziness, dry May have
days to 40 mouth faster onset of
mg/d mg/d antidepressant
Limit dosage to
20 mg/d if
used in
combinatio
n with
strong
CYP3A4
inhibitors
Has not
been
studied for
use with
severe
renal or
hepatic
dysfunction
Less sexual
dysfunction
Weight neutral
May have
faster onset of
antidepressant
effect
Weight neutral
mg)
Vortioxetine SSRI
Start at 10 mg/d
GI symptoms, headache, dizziness
Can increase to 20 mg/d if needed
Do not exceed 10 mg/d for CYP2D6 poor metabolizers
No increase in blood pressure, heart rate, QT interval
Limited benefit for anxiety

Adjunctive Therapy
Aripiprazole Second-generation antipsychotic
Start at 2-5 mg/d
Headache, extrapyramidal symptoms, akathisia, sedation, insomnia, weight gain, metabolic syndrome, anticholinergic effects, tremor
Titrate every 7+ days based on response to maximum dosage of 15 mg/d
Not for use as monotherapy
$75 (5 mg)

Brexpiprazole Second-generation
Start at 0.5-1 mg/d
Akathisia, metabolic effects, tremor
Not for use as monotherapy
$984 (2 mg)
antipsychotic

titrated

every 7+
days based
on
response
to
maximum
dosage of
3 mg/d

L-Methylfolate
Medical food
15 mg/d

No substantial known adverse effects
Not for use as monotherapy (15 mg)

$143

Abbreviations: CKD, chronic kidney disease; GI, gastrointestinal; SNRI, serotonin-norepinephrine reuptake inhibitor; SPARI, serotonin partial agonist-reuptake inhibitor; SSRI, selective serotonin reuptake inhibitor.